PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Números Complexos.

2 participantes

Ir para baixo

Números Complexos. Empty Números Complexos.

Mensagem por soldier Qui 30 maio 2013, 00:37

[IME] Resolva a equação Z^5 = ℤ* ,Onde ℤ* é o conjugado do número complexo Z.

GABARITO S={ +-1 , 0 , +- 1/2 , +- √3/2i }
soldier
soldier
Padawan
Padawan

Mensagens : 96
Data de inscrição : 24/03/2013
Idade : 33
Localização : joão pessoa

Ir para o topo Ir para baixo

Números Complexos. Empty Re: Números Complexos.

Mensagem por Luck Qui 30 maio 2013, 22:28

z^5 = z* , z = p cisθ
z^5.z = z*.z
z^6 = p²
(pcisθ)^6 = p²
p^6cis(6θ) = p²cis(0º)
p^6 = p² ∴ p = 0 ( z =0) ou p = 1
6θ = 0 + 2kpi , k ∈ Z
θ = kpi/3 , θ {pi/3, 2pi/3 , pi , 4pi/3 , 5pi/3 , 2pi }
z = cis(pi/3) = 1/2 + (√3/2)i
z = cis(2pi/3) = -1/2 + (√3/2)i
z = cis(pi) = -1
z = cis(4pi/3) = -1/2 - (√3/2)i
z = cis(5pi/3) = 1/2 - (√3/2)i
z = cis(2pi) = 1

S = { +-1 , 0 , +-1/2 +- (√3/2)i }
Luck
Luck
Grupo
Velhos amigos do Fórum

Grupo Velhos amigos do Fórum

Mensagens : 5322
Data de inscrição : 20/09/2009
Idade : 32
Localização : RJ

Ir para o topo Ir para baixo

Números Complexos. Empty Re: Números Complexos.

Mensagem por soldier Sex 31 maio 2013, 00:31

Muito legal sua solução.Eu estava tentando resolver desse jeito,porém não
consegui devido o expoente ser ímpar.
Esse seu pensamento foi legal.

z^5.z = z*.z
z^6 = p²

Valeeeuu.
soldier
soldier
Padawan
Padawan

Mensagens : 96
Data de inscrição : 24/03/2013
Idade : 33
Localização : joão pessoa

Ir para o topo Ir para baixo

Números Complexos. Empty Re: Números Complexos.

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos