(Morgado)Probabilidade somas de dois dados

Ir em baixo

(Morgado)Probabilidade somas de dois dados

Mensagem por samuelv em Qui 16 Ago 2018, 16:43

Lança-se repetidamente um par de dados não tendenciosos. Qual é a probabilidade de obtermos duas somas iguais a 7 antes de obtermos três somas iguais a 3?

Gabarito:
243/256

Esse tipo de questão pareceu simples para o caso de moedas (só duas possibilidades de resultado). Mas nesse caso, existem muitos modos de organizar essas somas da maneira desejada. Como proceder?
avatar
samuelv
iniciante

Mensagens : 13
Data de inscrição : 12/04/2017
Idade : 19
Localização : São Paulo - SP (Brasil)

Voltar ao Topo Ir em baixo

Re: (Morgado)Probabilidade somas de dois dados

Mensagem por PedroX em Dom 19 Ago 2018, 19:30

Não achei o problema muito claro, muito menos o gabarito coerente. Segue uma possível abordagem:

Somas iguais a 7:

(4; 3) -> A -> P(A) = 1/36
(3; 4) -> B -> P(B) = 1/36
(5; 2) -> C -> P(C) = 1/36
(2; 5) -> D -> P(D) = 1/36
(1; 6) -> E -> P(E) = 1/36
(6; 1) -> F -> P(F) = 1/36

Duas somas iguais a 7:

AA, AB, AC, AD, AE, AF
BA, BB, BC, BD, BE, BF
CA, CB, CC, CD, CE, CF
DA, DB, DC, DD, DE, DF
EA, EB, EC, ED, EE, EF
FA, FB, FC, FD, FE, FF

A probabilidade total será a soma das 36 anteriores:
(\frac{1}{36})^{2} + ... + (\frac{1}{36})^{2} = 36*(\frac{1}{36})^{2}

Somas iguais a 3:

(1; 2) -> G -> P(G) = 1/36
(2; 1) -> H -> P(H) = 1/36

Três somas iguais a 3: GGG, GGH, GHG, GHH, HGG, HGH, HHG, HHH

A probabilidade total será a soma:
(\frac{1}{36})^{3} + ... + (\frac{1}{36})^{3} = 8*(\frac{1}{36})^{3}

A probabilidade de acontecer "duas somas iguais a 7 antes de obtermos três somas iguais a 3" é o produto das duas probabilidades calculadas: (36*Cool/(36² * 36³) = 8 / (36^4)

____________________________________________
Você já leu as regras do fórum? Veja: https://pir2.forumeiros.com/Regulamentos-h26.htm

Obs: A pergunta acima é mostrada a todo usuário que veja minhas mensagens. Não entender como pessoal.
avatar
PedroX
Administração
Administração

Mensagens : 852
Data de inscrição : 24/08/2011
Idade : 23
Localização : Campinas - Brasil

Voltar ao Topo Ir em baixo

Re: (Morgado)Probabilidade somas de dois dados

Mensagem por samuelv em Sex 24 Ago 2018, 14:17

@PedroX escreveu:A probabilidade de acontecer "duas somas iguais a 7 antes de obtermos três somas iguais a 3" é o produto das duas probabilidades calculadas: (36*Cool/(36² * 36³) = 8 / (36^4)

Essa parte não fez sentido pra mim. Por que multiplicar? Ademais, o resultado não parece coerente (muito pequeno).
avatar
samuelv
iniciante

Mensagens : 13
Data de inscrição : 12/04/2017
Idade : 19
Localização : São Paulo - SP (Brasil)

Voltar ao Topo Ir em baixo

Re: (Morgado)Probabilidade somas de dois dados

Mensagem por PedroX em Sab 25 Ago 2018, 22:36

A probabilidade de não ocorrer uma soma igual a 7 em dois lançamentos seguidos (ou simultâneos) é de 30/36.

A probabilidade de não ocorrer uma soma igual a 3 em dois lançamentos seguidos (ou simultâneos) poderia ser calculada de forma similar, mas vamos fazer de outro modo para verificar também:

Possibilidade I: Ocorrer 1 e não ocorrer 2. Probabilidade: (1/6) * (5/6) = 5/36
Possibilidade II: Ocorrer 2 e não ocorrer 1. Probabilidade: (1/6) * (5/6) = 5/36
Possibilidade III: Ocorrer 3, 4, 5 ou 6 (e tanto faz o outro dado). Probabilidade: 4/6 = 24/36

Portanto, 34/36 é a probabilidade de a soma não dar 3.

A probabilidade de NÃO "obtermos duas somas iguais a 7 antes de obtermos três somas iguais a 3" pode ser calculada por:

- Possibilidade I: Não ocorrer soma igual a 7 na primeira vez. Probabilidade = 30/36
- Possibilidade II: Ocorrer soma igual a 7 na primeira vez e não ocorrer soma igual a 7 na segunda vez. Probabilidade = (6/36)*(30/36)
- Possibilidade III: Ocorrer soma igual a 7 nas duas primeiras vezes e não ocorrer soma igual a 3 na terceira vez. Probabilidade = (6/36)*(6/36)*(34/36)
- Possibilidade IV: Ocorrer soma igual a 7 nas duas primeiras vezes , soma igual a 3 na terceira vez e não ocorrer soma igual a 3 na quarta vez. Probabilidade = (6/36)*(6/36)*(2/36)*(34/36)
- Possibilidade V: Ocorrer soma igual a 7 nas duas primeiras vezes, soma igual a 3 nas duas próximas vezes e não ocorrer soma igual a 3 na quinta vez. Probabilidade = (6/36)*(6/36)*(2/36)*(2/36)*(34/36)

Resultado = 30/36 + (6/36)*(30/36) + (6/36)*(6/36)*(34/36) + (6/36)*(6/36)*(2/36)*(34/36) + (6/36)*(6/36)*(2/36)*(2/36)*(34/36)

Resultado = 1679608 / (36^4)

A probabilidade complementar é: 8 / (36^4)

Esse método não é o mais rápido, mas mostra que a probabilidade anteriormente calculada coerente. Imagine que você precisa obrigatoriamente obter uma soma igual a 7, e de novo, e então uma soma igual a 3, outra soma igual a 3 e outra soma igual 3. Não é algo provável.

____________________________________________
Você já leu as regras do fórum? Veja: https://pir2.forumeiros.com/Regulamentos-h26.htm

Obs: A pergunta acima é mostrada a todo usuário que veja minhas mensagens. Não entender como pessoal.
avatar
PedroX
Administração
Administração

Mensagens : 852
Data de inscrição : 24/08/2011
Idade : 23
Localização : Campinas - Brasil

Voltar ao Topo Ir em baixo

Re: (Morgado)Probabilidade somas de dois dados

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Voltar ao Topo Ir em baixo

Voltar ao Topo

- Tópicos similares

 
Permissão deste fórum:
Você não pode responder aos tópicos neste fórum