Curiosidade: Função do Segundo Grau
2 participantes
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Curiosidade: Função do Segundo Grau
Considere a função f(x) = x²+2x+1
eu estava fazendo um gráfico da função e vi que:
f(-5)= 16
f(-4) = 9
f(-3) = 4
f(-2) = 1
f(-1) = 0
f(0) = 2
f(1) = 4
f(2) = 9 (4+5)
f(3) = 16 (9+7)
f(4) = 25 (16+9)
f(5) = 36 (25+11)
f(6) = 49 (36+13)
Como vocês podem ver uma p.a do número que somado à imagem anterior é igual a imagem atual. essa pa tem a0 em f(1) nos positivos e a0 em f(-3) nos negativos.
Seria possível eu ter previsto que essa p.a. ia se formar olhando apenas a eguação de segundo grau, sem precisar adotar o gráfico e valores nele? A maioria das equações de segundo grau tem tendência a formar p.a. em algum ponto? Eu nunca parei para observar isso.
eu estava fazendo um gráfico da função e vi que:
f(-5)= 16
f(-4) = 9
f(-3) = 4
f(-2) = 1
f(-1) = 0
f(0) = 2
f(1) = 4
f(2) = 9 (4+5)
f(3) = 16 (9+7)
f(4) = 25 (16+9)
f(5) = 36 (25+11)
f(6) = 49 (36+13)
Como vocês podem ver uma p.a do número que somado à imagem anterior é igual a imagem atual. essa pa tem a0 em f(1) nos positivos e a0 em f(-3) nos negativos.
Seria possível eu ter previsto que essa p.a. ia se formar olhando apenas a eguação de segundo grau, sem precisar adotar o gráfico e valores nele? A maioria das equações de segundo grau tem tendência a formar p.a. em algum ponto? Eu nunca parei para observar isso.
TOMASNPB- Padawan
- Mensagens : 59
Data de inscrição : 15/12/2014
Idade : 25
Localização : Recife,PE,BRASIL
Re: Curiosidade: Função do Segundo Grau
Isto acontece sim. Só não entendi onde você quer chegar. É mais fácil usar a equação e/ou o gráfico.
O gráfico é uma parábola com a concavidade voltada para cima e é simétrico em relação ao eixo de simetria que passa pelo seu vértice V(0, 1). Neste caso o eixo de simetria é o próprio eixo y das ordenadas. Basta analisar o que acontece para x >= 0
Você errou no cálculo de f(0)
f(0) = 1 = (0² + 1)
f(1) = 4 = (1² + 3)
f(2) = 9 = (2² + 5
f(3) = 16 = (3² + 7)
f(4) = 25 = (4² + 9)
f(5) = 36 = (5² + 11)
f(6) = 49 = (6² + 13)
..................................
f(n) = (n + 1)² = (n² + x)
A única PA que existe é 1, 3, 5, 7, 9, 11, 13, ......., x
O gráfico é uma parábola com a concavidade voltada para cima e é simétrico em relação ao eixo de simetria que passa pelo seu vértice V(0, 1). Neste caso o eixo de simetria é o próprio eixo y das ordenadas. Basta analisar o que acontece para x >= 0
Você errou no cálculo de f(0)
f(0) = 1 = (0² + 1)
f(1) = 4 = (1² + 3)
f(2) = 9 = (2² + 5
f(3) = 16 = (3² + 7)
f(4) = 25 = (4² + 9)
f(5) = 36 = (5² + 11)
f(6) = 49 = (6² + 13)
..................................
f(n) = (n + 1)² = (n² + x)
A única PA que existe é 1, 3, 5, 7, 9, 11, 13, ......., x
Elcioschin- Grande Mestre
- Mensagens : 73172
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP
Tópicos semelhantes
» funcao do primeiro grau e segundo grau
» Função Lucro, Função do Segundo Grau forma fatorada
» Função do Segundo Grau - UnB
» Função do segundo grau
» Função do segundo grau
» Função Lucro, Função do Segundo Grau forma fatorada
» Função do Segundo Grau - UnB
» Função do segundo grau
» Função do segundo grau
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos