Combinatória
3 participantes
Página 1 de 1
Combinatória
Bom dia a todos. É minha primeira vez aqui neste fórum e espero que possamos compartilhar de modo satisfatório nossos conhecimentos matemáticos. Inicialmente gostaria de saber se alguém pode me ajudar com a seguinte questão:
De quantos modos é possível formar uma roda de ciranda com 7 meninas e 12 meninos sem que haja duas meninas em posições adjacentes?
A resposta é (11!)²/10
Desde já agradeço. Até a próxima!
De quantos modos é possível formar uma roda de ciranda com 7 meninas e 12 meninos sem que haja duas meninas em posições adjacentes?
A resposta é (11!)²/10
Desde já agradeço. Até a próxima!
DouglasM- Iniciante
- Mensagens : 37
Data de inscrição : 22/02/2010
Idade : 33
Localização : RJ
Re: Combinatória
Nosso especialista em análise combinatória é o Robalo. Não é a minha praia... é um caso de permutação circular que fica difícil pelo número de meninas (7). Pelo menos em tese a resposta é todas as permutações possíveis menos aquelas em que há pelo menos duas meninas juntas.
Essa restrição é que não consigo encontrar. Vejamos o que dizem nossos craques...
Essa restrição é que não consigo encontrar. Vejamos o que dizem nossos craques...
____________________________________________
In memoriam - Euclides faleceu na madrugada do dia 3 de Abril de 2018.
Lembre-se de que os vestibulares têm provas de Português também! Habitue-se a escrever corretamente em qualquer circunstância!
O Universo das coisas que eu não sei é incomensuravelmente maior do que o pacotinho de coisas que eu penso que sei.
Euclides- Fundador
- Mensagens : 32508
Data de inscrição : 07/07/2009
Idade : 74
Localização : São Paulo - SP
Re: Combinatória
Hola Euclides.
Agradeço as suas palavras mas na realidade não sei tanta coisa como vc sabe.
Essa é uma questão do livro do saudoso Prof. Morgado que tem exatamente essa resposta. Vou tentar ajudar o nosso amigo DouglasM.
Os 12 rapazes podem sentar-se ao redor de uma mesa circular de:
(PC)12=(12-1)!=11! formas.
Como sobram 12 lugares, após arrumarmos os 12 rapazes,então:
a primeira moça pode ocupar 12 posições; a segunda moça pode ocupar 11 posições; a terceira pode ocupar 10 posições; a quarta 9 posições; a quinta 8 posições; a sexta pode ocupar 7 posições; e a sétima só pode ocupar 6 posições. Assim, temos o produto 12.11.10.9.8.7.6 = A(12,7)= 12!/(5!)= 12!/5!
Aplicando o princípio fundamental da contagem , teremos:
11!.(12!)/5! modos de colocarmos 12 rapazes e 7 moças de forma que as moças não fiquem uma ao lado da outra.
A partir dessa resposta vc pode fazer outras formas de representação, por exemplo:
11!.(12!)/5! = 11!*12*11!/5! = 11!*11!*12/120 = simplificando, temos:
11!*11!*12/120 = 11!*11!/10 = (11!)²/10 aproximadamente 1,5933509 14 ou 1,6*10^14
Poderíamos também fazer:
os 12 rapazes podem sentar-se ao redor de uma mesa circular de 11! formas.
Deixam 12 lugares. As garotas tem 7!*C12,7 = 12!*7!/(7!5!) = 12!/5! formas.
Total= 11!·12!/5! = (11!)²/10
Agradeço as suas palavras mas na realidade não sei tanta coisa como vc sabe.
Essa é uma questão do livro do saudoso Prof. Morgado que tem exatamente essa resposta. Vou tentar ajudar o nosso amigo DouglasM.
Os 12 rapazes podem sentar-se ao redor de uma mesa circular de:
(PC)12=(12-1)!=11! formas.
Como sobram 12 lugares, após arrumarmos os 12 rapazes,então:
a primeira moça pode ocupar 12 posições; a segunda moça pode ocupar 11 posições; a terceira pode ocupar 10 posições; a quarta 9 posições; a quinta 8 posições; a sexta pode ocupar 7 posições; e a sétima só pode ocupar 6 posições. Assim, temos o produto 12.11.10.9.8.7.6 = A(12,7)= 12!/(5!)= 12!/5!
Aplicando o princípio fundamental da contagem , teremos:
11!.(12!)/5! modos de colocarmos 12 rapazes e 7 moças de forma que as moças não fiquem uma ao lado da outra.
A partir dessa resposta vc pode fazer outras formas de representação, por exemplo:
11!.(12!)/5! = 11!*12*11!/5! = 11!*11!*12/120 = simplificando, temos:
11!*11!*12/120 = 11!*11!/10 = (11!)²/10 aproximadamente 1,5933509 14 ou 1,6*10^14
Poderíamos também fazer:
os 12 rapazes podem sentar-se ao redor de uma mesa circular de 11! formas.
Deixam 12 lugares. As garotas tem 7!*C12,7 = 12!*7!/(7!5!) = 12!/5! formas.
Total= 11!·12!/5! = (11!)²/10
Paulo Testoni- Membro de Honra
- Mensagens : 3409
Data de inscrição : 19/07/2009
Idade : 77
Localização : Blumenau - Santa Catarina
Re: Combinatória
Obrigado Robalo! Cheguei perto nesse, mas agora o problema já foi resolvido. Até a próxima.
DouglasM- Iniciante
- Mensagens : 37
Data de inscrição : 22/02/2010
Idade : 33
Localização : RJ
Re: Combinatória
Hola DouglasM.
Estamos aqui para ajudar as pessoas dentro da medida do possível e com muita satisfação.
Mesmo com dúvida vc pode colocar a sua solução, não tenha receios, pois ninguém irá zombar de vc.
Estamos aqui para ajudar as pessoas dentro da medida do possível e com muita satisfação.
Mesmo com dúvida vc pode colocar a sua solução, não tenha receios, pois ninguém irá zombar de vc.
Paulo Testoni- Membro de Honra
- Mensagens : 3409
Data de inscrição : 19/07/2009
Idade : 77
Localização : Blumenau - Santa Catarina
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos