PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Inequação do 1º Grau

3 participantes

Ir para baixo

Inequação do 1º Grau Empty Inequação do 1º Grau

Mensagem por agnesrava Ter 10 Abr 2012, 07:57

(GDF-SEA-IDR) Para cada número real x, seja



Deste modo, o valor máximo de f(x) é:


agnesrava
agnesrava
Padawan
Padawan

Mensagens : 93
Data de inscrição : 07/02/2012
Idade : 31
Localização : Santa Maria-RS

Ir para o topo Ir para baixo

Inequação do 1º Grau Empty Re: Inequação do 1º Grau

Mensagem por Elcioschin Ter 10 Abr 2012, 09:09

Basta testar

Para x < 1/3 ----> f(1/3) < 4*(1/3) + 1 -----> f(1/3) < 7/3

Para x = 1/3 ----> f(1/3) = 1/3 + 2 ----> f(1/3) = 7/3

Para x = 2/3 ----> f(2/3) < 2/3 + 2 ----> f(2/3) < 8/3

Para x = 2/3 ----> f(2/3) = -2*(2/3) + 4 ----> f(2/3) = 8/3

Para x < 2/3 ----> f(x) < 8/3 pois a função é decrescente
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73172
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Inequação do 1º Grau Empty Re: Inequação do 1º Grau

Mensagem por Ferrus Ter 10 Abr 2012, 09:10

Para ficar mais clara a resposta basta você construir um gráfico.
Ferrus
Ferrus
Jedi
Jedi

Mensagens : 309
Data de inscrição : 03/01/2012
Idade : 31
Localização : Brasil

Ir para o topo Ir para baixo

Inequação do 1º Grau Empty Re: Inequação do 1º Grau

Mensagem por agnesrava Ter 10 Abr 2012, 12:37

ook, obrigada Very Happy
agnesrava
agnesrava
Padawan
Padawan

Mensagens : 93
Data de inscrição : 07/02/2012
Idade : 31
Localização : Santa Maria-RS

Ir para o topo Ir para baixo

Inequação do 1º Grau Empty Re: Inequação do 1º Grau

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos