PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Geometria Espacial

2 participantes

Ir para baixo

Geometria Espacial Empty Geometria Espacial

Mensagem por mv.valiati Sex 06 maio 2022, 10:27

Considere um hemisfério de raio R apoiado sobre um plano α. Seja α' um plano paralelo a α e que está a uma distância d < R de α. 
a) Use o Princípio de Cavalieri para mostrar que o volume da porção do hemisfério que está entre os planos α e α' é dado por V = π*d/3 (3R² − d² ). 
b) Use o item anterior para obter uma expressão para o volume da porção do hemisfério que não está entre os planos α e α'.

mv.valiati
Iniciante

Mensagens : 21
Data de inscrição : 21/02/2022

Ir para o topo Ir para baixo

Geometria Espacial Empty Re: Geometria Espacial

Mensagem por Medeiros Dom 08 maio 2022, 03:17

Considere sobre o mesmo plano alfa um cilindro de mesmo raio e mesma altura do hemisfério e ao lado dele. E inscrito no cilindro, um cone reto e invertido de mesmo raio da base e altura igual.

A interseção com esses sólidos de qualquer plano paralelo a alfa resulta numa área circular no hemisfério e área de mesma medida na coroa formada entre o cilindro e o cone. Portanto, pelo princípio de Cavalieri os volumes serão iguais. Desta forma podemos saber o volume no hemisfério a partir do cálculo do volume no cilindro (menos o do cone), o que é de equacionamento muito mais fácil.

Note que, por construção, a geratirz do cone forma 45º com a horizontal.

Para o item (b) precisamos do volume da parte de cima do cilindro e, por não lembrar a fórmula do tronco de cone, em vez de subtrair o volume do tronco subtraímos o cone inteiro e adicionamos a ponta de baixo que foi tirada a mais.
Geometria Espacial Scre1808


Observe que se somarmos os dois volumes calculados em (a) e (b) obtemos a fórmula do volume do hemisfério (meia esfera).
Medeiros
Medeiros
Grupo
Velhos amigos do Fórum

Grupo Velhos amigos do Fórum

Mensagens : 10547
Data de inscrição : 01/09/2009
Idade : 72
Localização : Santos, SP, BR

Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos