PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Demonstração de relação trigonométrica.

3 participantes

Ir para baixo

Resolvido Demonstração de relação trigonométrica.

Mensagem por Floral Fury Ter 29 Mar 2022, 22:11

Em um triângulo ABC, mostre que, se:  Demonstração de relação trigonométrica. Svg+xml;base64,PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPCEtLSBHZW5lcmF0ZWQgYnkgQ29kZUNvZ3Mgd2l0aCBkdmlzdmdtIDIuMTEuMSAtLT4KPHN2ZyB2ZXJzaW9uPScxLjEnIHhtbG5zPSdodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZycgeG1sbnM6eGxpbms9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkveGxpbmsnIHdpZHRoPScyNTEuMTU0OTIzcHQnIGhlaWdodD0nMTMuNTIyODQ5cHQnIHZpZXdCb3g9Jy0uMjM5MDUxIC0uMjQwNjM1IDI1MS4xNTQ5MjMgMTMuNTIyODQ5Jz4KPGRlZnM+CjxwYXRoIGlkPSdnMS00MCcgZD0nTTMuODg1NDMgMi45MDUxMDZDMy44ODU0MyAyLjg2OTI0IDMuODg1NDMgMi44NDUzMyAzLjY4MjE5MiAyLjY0MjA5MkMyLjQ4NjY3NSAxLjQzNDYyIDEuODE3MTg2LS41Mzc5ODMgMS44MTcxODYtMi45NzY4MzdDMS44MTcxODYtNS4yOTYxMzkgMi4zNzkwNzgtNy4yOTI2NTMgMy43NjU4NzgtOC43MDMzNjJDMy44ODU0My04LjgxMDk1OSAzLjg4NTQzLTguODM0ODY5IDMuODg1NDMtOC44NzA3MzVDMy44ODU0My04Ljk0MjQ2NiAzLjgyNTY1NC04Ljk2NjM3NiAzLjc3NzgzMy04Ljk2NjM3NkMzLjYyMjQxNi04Ljk2NjM3NiAyLjY0MjA5Mi04LjEwNTYwNCAyLjA1NjI4OS02LjkzMzk5OEMxLjQ0NjU3NS01LjcyNjUyNiAxLjE3MTYwNi00LjQ0NzMyMyAxLjE3MTYwNi0yLjk3NjgzN0MxLjE3MTYwNi0xLjkxMjgyNyAxLjMzODk3OS0uNDkwMTYyIDEuOTYwNjQ4IC43ODkwNDFDMi42NjYwMDIgMi4yMjM2NjEgMy42NDYzMjYgMy4wMDA3NDcgMy43Nzc4MzMgMy4wMDA3NDdDMy44MjU2NTQgMy4wMDA3NDcgMy44ODU0MyAyLjk3NjgzNyAzLjg4NTQzIDIuOTA1MTA2WicvPgo8cGF0aCBpZD0nZzEtNDEnIGQ9J00zLjM3MTM1Ny0yLjk3NjgzN0MzLjM3MTM1Ny0zLjg4NTQzIDMuMjUxODA2LTUuMzY3ODcgMi41ODIzMTYtNi43NTQ2N0MxLjg3Njk2MS04LjE4OTI5IC44OTY2MzgtOC45NjYzNzYgLjc2NTEzMS04Ljk2NjM3NkMuNzE3MzEtOC45NjYzNzYgLjY1NzUzNC04Ljk0MjQ2NiAuNjU3NTM0LTguODcwNzM1Qy42NTc1MzQtOC44MzQ4NjkgLjY1NzUzNC04LjgxMDk1OSAuODYwNzcyLTguNjA3NzIxQzIuMDU2Mjg5LTcuNDAwMjQ5IDIuNzI1Nzc4LTUuNDI3NjQ2IDIuNzI1Nzc4LTIuOTg4NzkyQzIuNzI1Nzc4LS42Njk0ODkgMi4xNjM4ODUgMS4zMjcwMjQgLjc3NzA4NiAyLjczNzczM0MuNjU3NTM0IDIuODQ1MzMgLjY1NzUzNCAyLjg2OTI0IC42NTc1MzQgMi45MDUxMDZDLjY1NzUzNCAyLjk3NjgzNyAuNzE3MzEgMy4wMDA3NDcgLjc2NTEzMSAzLjAwMDc0N0MuOTIwNTQ4IDMuMDAwNzQ3IDEuOTAwODcyIDIuMTM5OTc1IDIuNDg2Njc1IC45NjgzNjlDMy4wOTYzODktLjI1MTA1OSAzLjM3MTM1Ny0xLjU0MjIxNyAzLjM3MTM1Ny0yLjk3NjgzN1onLz4KPHBhdGggaWQ9J2cxLTQzJyBkPSdNNC43NzAxMTItMi43NjE2NDRIOC4wNjk3MzhDOC4yMzcxMTEtMi43NjE2NDQgOC40NTIzMDQtMi43NjE2NDQgOC40NTIzMDQtMi45NzY4MzdDOC40NTIzMDQtMy4yMDM5ODUgOC4yNDkwNjYtMy4yMDM5ODUgOC4wNjk3MzgtMy4yMDM5ODVINC43NzAxMTJWLTYuNTAzNjExQzQuNzcwMTEyLTYuNjcwOTg0IDQuNzcwMTEyLTYuODg2MTc3IDQuNTU0OTE5LTYuODg2MTc3QzQuMzI3NzcxLTYuODg2MTc3IDQuMzI3NzcxLTYuNjgyOTM5IDQuMzI3NzcxLTYuNTAzNjExVi0zLjIwMzk4NUgxLjAyODE0NEMuODYwNzcyLTMuMjAzOTg1IC42NDU1NzktMy4yMDM5ODUgLjY0NTU3OS0yLjk4ODc5MkMuNjQ1NTc5LTIuNzYxNjQ0IC44NDg4MTctMi43NjE2NDQgMS4wMjgxNDQtMi43NjE2NDRINC4zMjc3NzFWLjUzNzk4M0M0LjMyNzc3MSAuNzA1MzU1IDQuMzI3NzcxIC45MjA1NDggNC41NDI5NjQgLjkyMDU0OEM0Ljc3MDExMiAuOTIwNTQ4IDQuNzcwMTEyIC43MTczMSA0Ljc3MDExMiAuNTM3OTgzVi0yLjc2MTY0NFonLz4KPHBhdGggaWQ9J2cxLTQ5JyBkPSdNMy40NDMwODgtNy42NjMyNjNDMy40NDMwODgtNy45MzgyMzIgMy40NDMwODgtNy45NTAxODcgMy4yMDM5ODUtNy45NTAxODdDMi45MTcwNjEtNy42MjczOTcgMi4zMTkzMDMtNy4xODUwNTYgMS4wODc5Mi03LjE4NTA1NlYtNi44MzgzNTZDMS4zNjI4ODktNi44MzgzNTYgMS45NjA2NDgtNi44MzgzNTYgMi42MTgxODItNy4xNDkxOTFWLS45MjA1NDhDMi42MTgxODItLjQ5MDE2MiAyLjU4MjMxNi0uMzQ2NyAxLjUzMDI2Mi0uMzQ2N0gxLjE1OTY1MVYwQzEuNDgyNDQxLS4wMjM5MSAyLjY0MjA5Mi0uMDIzOTEgMy4wMzY2MTMtLjAyMzkxUzQuNTc4ODI5LS4wMjM5MSA0LjkwMTYxOSAwVi0uMzQ2N0g0LjUzMTAwOUMzLjQ3ODk1NC0uMzQ2NyAzLjQ0MzA4OC0uNDkwMTYyIDMuNDQzMDg4LS45MjA1NDhWLTcuNjYzMjYzWicvPgo8cGF0aCBpZD0nZzEtNjEnIGQ9J004LjA2OTczOC0zLjg3MzQ3NEM4LjIzNzExMS0zLjg3MzQ3NCA4LjQ1MjMwNC0zLjg3MzQ3NCA4LjQ1MjMwNC00LjA4ODY2N0M4LjQ1MjMwNC00LjMxNTgxNiA4LjI0OTA2Ni00LjMxNTgxNiA4LjA2OTczOC00LjMxNTgxNkgxLjAyODE0NEMuODYwNzcyLTQuMzE1ODE2IC42NDU1NzktNC4zMTU4MTYgLjY0NTU3OS00LjEwMDYyM0MuNjQ1NTc5LTMuODczNDc0IC44NDg4MTctMy44NzM0NzQgMS4wMjgxNDQtMy44NzM0NzRIOC4wNjk3MzhaTTguMDY5NzM4LTEuNjQ5ODEzQzguMjM3MTExLTEuNjQ5ODEzIDguNDUyMzA0LTEuNjQ5ODEzIDguNDUyMzA0LTEuODY1MDA2QzguNDUyMzA0LTIuMDkyMTU0IDguMjQ5MDY2LTIuMDkyMTU0IDguMDY5NzM4LTIuMDkyMTU0SDEuMDI4MTQ0Qy44NjA3NzItMi4wOTIxNTQgLjY0NTU3OS0yLjA5MjE1NCAuNjQ1NTc5LTEuODc2OTYxQy42NDU1NzktMS42NDk4MTMgLjg0ODgxNy0xLjY0OTgxMyAxLjAyODE0NC0xLjY0OTgxM0g4LjA2OTczOFonLz4KPHBhdGggaWQ9J2cwLTU4JyBkPSdNMi4xOTk3NTEtLjU3Mzg0OEMyLjE5OTc1MS0uOTIwNTQ4IDEuOTEyODI3LTEuMTU5NjUxIDEuNjI1OTAzLTEuMTU5NjUxQzEuMjc5MjAzLTEuMTU5NjUxIDEuMDQwMS0uODcyNzI3IDEuMDQwMS0uNTg1ODAzQzEuMDQwMS0uMjM5MTAzIDEuMzI3MDI0IDAgMS42MTM5NDggMEMxLjk2MDY0OCAwIDIuMTk5NzUxLS4yODY5MjQgMi4xOTk3NTEtLjU3Mzg0OFonLz4KPHBhdGggaWQ9J2cwLTY1JyBkPSdNMi4wMzIzNzktMS4zMjcwMjRDMS42MTM5NDgtLjYyMTY2OSAxLjIwNzQ3Mi0uMzgyNTY1IC42MzM2MjQtLjM0NjdDLjUwMjExNy0uMzM0NzQ1IC40MDY0NzYtLjMzNDc0NSAuNDA2NDc2LS4xMTk1NTJDLjQwNjQ3Ni0uMDQ3ODIxIC40NjYyNTIgMCAuNTQ5OTM4IDBDLjc2NTEzMSAwIDEuMzAzMTEzLS4wMjM5MSAxLjUxODMwNi0uMDIzOTFDMS44NjUwMDYtLjAyMzkxIDIuMjQ3NTcyIDAgMi41ODIzMTYgMEMyLjY1NDA0NyAwIDIuNzk3NTA5IDAgMi43OTc1MDktLjIyNzE0OEMyLjc5NzUwOS0uMzM0NzQ1IDIuNzAxODY4LS4zNDY3IDIuNjMwMTM3LS4zNDY3QzIuMzU1MTY4LS4zNzA2MSAyLjEyODAyLS40NjYyNTIgMi4xMjgwMi0uNzUzMTc2QzIuMTI4MDItLjkyMDU0OCAyLjE5OTc1MS0xLjA1MjA1NSAyLjM1NTE2OC0xLjMxNTA2OEwzLjI2Mzc2MS0yLjgyMTQySDYuMzEyMzI5QzYuMzI0Mjg0LTIuNzEzODIzIDYuMzI0Mjg0LTIuNjE4MTgyIDYuMzM2MjM5LTIuNTEwNTg1QzYuMzcyMTA1LTIuMTk5NzUxIDYuNTE1NTY3LS45NTY0MTMgNi41MTU1NjctLjcyOTI2NUM2LjUxNTU2Ny0uMzcwNjEgNS45MDU4NTMtLjM0NjcgNS43MTQ1Ny0uMzQ2N0M1LjU4MzA2NC0uMzQ2NyA1LjQ1MTU1Ny0uMzQ2NyA1LjQ1MTU1Ny0uMTMxNTA3QzUuNDUxNTU3IDAgNS41NTkxNTMgMCA1LjYzMDg4NCAwQzUuODM0MTIyIDAgNi4wNzMyMjUtLjAyMzkxIDYuMjc2NDYzLS4wMjM5MUg2Ljk1NzkwOEM3LjY4NzE3My0uMDIzOTEgOC4yMTMyIDAgOC4yMjUxNTYgMEM4LjMwODg0MiAwIDguNDQwMzQ5IDAgOC40NDAzNDktLjIyNzE0OEM4LjQ0MDM0OS0uMzQ2NyA4LjMzMjc1Mi0uMzQ2NyA4LjE1MzQyNS0uMzQ2N0M3LjQ5NTg5LS4zNDY3IDcuNDgzOTM1LS40NTQyOTYgNy40NDgwNy0uODEyOTUxTDYuNzE4ODA0LTguMjcyOTc2QzYuNjk0ODk0LTguNTEyMDggNi42NDcwNzMtOC41MzU5OSA2LjUxNTU2Ny04LjUzNTk5QzYuMzk2MDE1LTguNTM1OTkgNi4zMjQyODQtOC41MTIwOCA2LjIxNjY4Ny04LjMzMjc1MkwyLjAzMjM3OS0xLjMyNzAyNFpNMy40NjY5OTktMy4xNjgxMkw1Ljg2OTk4OC03LjE4NTA1Nkw2LjI3NjQ2My0zLjE2ODEySDMuNDY2OTk5WicvPgo8cGF0aCBpZD0nZzAtNjYnIGQ9J000LjM3NTU5Mi03LjM1MjQyOEM0LjQ4MzE4OC03Ljc5NDc3IDQuNTMxMDA5LTcuODE4NjggNC45OTcyNi03LjgxODY4SDYuNTUxNDMyQzcuOTAyMzY2LTcuODE4NjggNy45MDIzNjYtNi42NzA5ODQgNy45MDIzNjYtNi41NjMzODdDNy45MDIzNjYtNS41OTUwMTkgNi45MzM5OTgtNC4zNjM2MzYgNS4zNTU5MTUtNC4zNjM2MzZIMy42MzQzNzFMNC4zNzU1OTItNy4zNTI0MjhaTTYuMzk2MDE1LTQuMjY3OTk1QzcuNjk5MTI4LTQuNTA3MDk4IDguODgyNjktNS40MTU2OTEgOC44ODI2OS02LjUxNTU2N0M4Ljg4MjY5LTcuNDQ4MDcgOC4wNTc3ODMtOC4xNjUzOCA2LjcwNjg0OS04LjE2NTM4SDIuODY5MjRDMi42NDIwOTItOC4xNjUzOCAyLjUzNDQ5Ni04LjE2NTM4IDIuNTM0NDk2LTcuOTM4MjMyQzIuNTM0NDk2LTcuODE4NjggMi42NDIwOTItNy44MTg2OCAyLjgyMTQyLTcuODE4NjhDMy41NTA2ODUtNy44MTg2OCAzLjU1MDY4NS03LjcyMzAzOSAzLjU1MDY4NS03LjU5MTUzMkMzLjU1MDY4NS03LjU2NzYyMSAzLjU1MDY4NS03LjQ5NTg5IDMuNTAyODY0LTcuMzE2NTYzTDEuODg4OTE3LS44ODQ2ODJDMS43ODEzMi0uNDY2MjUyIDEuNzU3NDEtLjM0NjcgLjkyMDU0OC0uMzQ2N0MuNjkzNC0uMzQ2NyAuNTczODQ4LS4zNDY3IC41NzM4NDgtLjEzMTUwN0MuNTczODQ4IDAgLjY0NTU3OSAwIC44ODQ2ODIgMEg0Ljk4NTMwNUM2LjgxNDQ0NiAwIDguMjI1MTU2LTEuMzg2OCA4LjIyNTE1Ni0yLjU5NDI3MUM4LjIyNTE1Ni0zLjU3NDU5NSA3LjM2NDM4NC00LjE3MjM1NCA2LjM5NjAxNS00LjI2Nzk5NVpNNC42OTgzODEtLjM0NjdIMy4wODQ0MzNDMi45MTcwNjEtLjM0NjcgMi44OTMxNTEtLjM0NjcgMi44MjE0Mi0uMzU4NjU1QzIuNjg5OTEzLS4zNzA2MSAyLjY3Nzk1OC0uMzk0NTIxIDIuNjc3OTU4LS40OTAxNjJDMi42Nzc5NTgtLjU3Mzg0OCAyLjcwMTg2OC0uNjQ1NTc5IDIuNzI1Nzc4LS43NTMxNzZMMy41NjI2NC00LjEyNDUzM0g1LjgxMDIxMkM3LjIyMDkyMi00LjEyNDUzMyA3LjIyMDkyMi0yLjgwOTQ2NSA3LjIyMDkyMi0yLjcxMzgyM0M3LjIyMDkyMi0xLjU2NjEyNyA2LjE4MDgyMi0uMzQ2NyA0LjY5ODM4MS0uMzQ2N1onLz4KPHBhdGggaWQ9J2cwLTY3JyBkPSdNOC45MzA1MTEtOC4zMDg4NDJDOC45MzA1MTEtOC40MTY0MzggOC44NDY4MjQtOC40MTY0MzggOC44MjI5MTQtOC40MTY0MzhTOC43NTExODMtOC40MTY0MzggOC42NTU1NDItOC4yOTY4ODdMNy44MzA2MzUtNy4yOTI2NTNDNy40MTIyMDQtOC4wMDk5NjMgNi43NTQ2Ny04LjQxNjQzOCA1Ljg1ODAzMi04LjQxNjQzOEMzLjI3NTcxNi04LjQxNjQzOCAuNTk3NzU4LTUuNzk4MjU3IC41OTc3NTgtMi45ODg3OTJDLjU5Nzc1OC0uOTkyMjc5IDEuOTk2NTEzIC4yNTEwNTkgMy43NDE5NjggLjI1MTA1OUM0LjY5ODM4MSAuMjUxMDU5IDUuNTM1MjQzLS4xNTU0MTcgNi4yMjg2NDMtLjc0MTIyQzcuMjY4NzQyLTEuNjEzOTQ4IDcuNTc5NTc3LTIuNzczNTk5IDcuNTc5NTc3LTIuODY5MjRDNy41Nzk1NzctMi45NzY4MzcgNy40ODM5MzUtMi45NzY4MzcgNy40NDgwNy0yLjk3NjgzN0M3LjM0MDQ3My0yLjk3NjgzNyA3LjMyODUxOC0yLjkwNTEwNiA3LjMwNDYwOC0yLjg1NzI4NUM2Ljc1NDY3LS45OTIyNzkgNS4xNDA3MjItLjA5NTY0MSAzLjk0NTIwNS0uMDk1NjQxQzIuNjc3OTU4LS4wOTU2NDEgMS41NzgwODItLjkwODU5MyAxLjU3ODA4Mi0yLjYwNjIyN0MxLjU3ODA4Mi0yLjk4ODc5MiAxLjY5NzYzNC01LjA2ODk5MSAzLjA0ODU2OC02LjYzNTExOEMzLjcwNjEwMi03LjQwMDI0OSA0LjgyOTg4OC04LjA2OTczOCA1Ljk2NTYyOS04LjA2OTczOEM3LjI4MDY5Ny04LjA2OTczOCA3Ljg2NjUwMS02Ljk4MTgxOCA3Ljg2NjUwMS01Ljc2MjM5MUM3Ljg2NjUwMS01LjQ1MTU1NyA3LjgzMDYzNS01LjE4ODU0MyA3LjgzMDYzNS01LjE0MDcyMkM3LjgzMDYzNS01LjAzMzEyNiA3Ljk1MDE4Ny01LjAzMzEyNiA3Ljk4NjA1Mi01LjAzMzEyNkM4LjExNzU1OS01LjAzMzEyNiA4LjEyOTUxNC01LjA0NTA4MSA4LjE3NzMzNS01LjI2MDI3NEw4LjkzMDUxMS04LjMwODg0MlonLz4KPHBhdGggaWQ9J2cwLTk5JyBkPSdNNC42NzQ0NzEtNC40OTUxNDNDNC40NDczMjMtNC40OTUxNDMgNC4zMzk3MjYtNC40OTUxNDMgNC4xNzIzNTQtNC4zNTE2ODFDNC4xMDA2MjMtNC4yOTE5MDUgMy45NjkxMTYtNC4xMTI1NzggMy45NjkxMTYtMy45MjEyOTVDMy45NjkxMTYtMy42ODIxOTIgNC4xNDg0NDMtMy41Mzg3MyA0LjM3NTU5Mi0zLjUzODczQzQuNjYyNTE2LTMuNTM4NzMgNC45ODUzMDUtMy43Nzc4MzMgNC45ODUzMDUtNC4yNTYwNEM0Ljk4NTMwNS00LjgyOTg4OCA0LjQzNTM2Ny01LjI3MjIyOSAzLjYxMDQ2MS01LjI3MjIyOUMyLjA0NDMzNC01LjI3MjIyOSAuNDc4MjA3LTMuNTYyNjQgLjQ3ODIwNy0xLjg2NTAwNkMuNDc4MjA3LS44MjQ5MDcgMS4xMjM3ODYgLjExOTU1MiAyLjM0MzIxMyAuMTE5NTUyQzMuOTY5MTE2IC4xMTk1NTIgNC45OTcyNi0xLjE0NzY5NiA0Ljk5NzI2LTEuMzAzMTEzQzQuOTk3MjYtMS4zNzQ4NDQgNC45MjU1MjktMS40MzQ2MiA0Ljg3NzcwOS0xLjQzNDYyQzQuODQxODQzLTEuNDM0NjIgNC44Mjk4ODgtMS40MjI2NjUgNC43MjIyOTEtMS4zMTUwNjhDMy45NTcxNjEtLjI5ODg3OSAyLjgyMTQyLS4xMTk1NTIgMi4zNjcxMjMtLjExOTU1MkMxLjU0MjIxNy0uMTE5NTUyIDEuMjc5MjAzLS44MzY4NjIgMS4yNzkyMDMtMS40MzQ2MkMxLjI3OTIwMy0xLjg1MzA1MSAxLjQ4MjQ0MS0zLjAxMjcwMiAxLjkxMjgyNy0zLjgyNTY1NEMyLjIyMzY2MS00LjM4NzU0NyAyLjg2OTI0LTUuMDMzMTI2IDMuNjIyNDE2LTUuMDMzMTI2QzMuNzc3ODMzLTUuMDMzMTI2IDQuNDM1MzY3LTUuMDA5MjE1IDQuNjc0NDcxLTQuNDk1MTQzWicvPgo8cGF0aCBpZD0nZzAtMTAxJyBkPSdNMi4xMzk5NzUtMi43NzM1OTlDMi40NjI3NjUtMi43NzM1OTkgMy4yNzU3MTYtMi43OTc1MDkgMy44NDk1NjQtMy4wMTI3MDJDNC43NTgxNTctMy4zNTk0MDIgNC44NDE4NDMtNC4wNTI4MDIgNC44NDE4NDMtNC4yNjc5OTVDNC44NDE4NDMtNC43OTQwMjIgNC4zODc1NDctNS4yNzIyMjkgMy41OTg1MDYtNS4yNzIyMjlDMi4zNDMyMTMtNS4yNzIyMjkgLjUzNzk4My00LjEzNjQ4OCAuNTM3OTgzLTIuMDA4NDY4Qy41Mzc5ODMtLjc1MzE3NiAxLjI1NTI5MyAuMTE5NTUyIDIuMzQzMjEzIC4xMTk1NTJDMy45NjkxMTYgLjExOTU1MiA0Ljk5NzI2LTEuMTQ3Njk2IDQuOTk3MjYtMS4zMDMxMTNDNC45OTcyNi0xLjM3NDg0NCA0LjkyNTUyOS0xLjQzNDYyIDQuODc3NzA5LTEuNDM0NjJDNC44NDE4NDMtMS40MzQ2MiA0LjgyOTg4OC0xLjQyMjY2NSA0LjcyMjI5MS0xLjMxNTA2OEMzLjk1NzE2MS0uMjk4ODc5IDIuODIxNDItLjExOTU1MiAyLjM2NzEyMy0uMTE5NTUyQzEuNjg1Njc5LS4xMTk1NTIgMS4zMjcwMjQtLjY1NzUzNCAxLjMyNzAyNC0xLjU0MjIxN0MxLjMyNzAyNC0xLjcwOTU4OSAxLjMyNzAyNC0yLjAwODQ2OCAxLjUwNjM1MS0yLjc3MzU5OUgyLjEzOTk3NVpNMS41NjYxMjctMy4wMTI3MDJDMi4wODAxOTktNC44NTM3OTggMy4yMTU5NC01LjAzMzEyNiAzLjU5ODUwNi01LjAzMzEyNkM0LjEyNDUzMy01LjAzMzEyNiA0LjQ4MzE4OC00LjcyMjI5MSA0LjQ4MzE4OC00LjI2Nzk5NUM0LjQ4MzE4OC0zLjAxMjcwMiAyLjU3MDM2MS0zLjAxMjcwMiAyLjA2ODI0NC0zLjAxMjcwMkgxLjU2NjEyN1onLz4KPHBhdGggaWQ9J2cwLTExMCcgZD0nTTIuNDYyNzY1LTMuNTAyODY0QzIuNDg2Njc1LTMuNTc0NTk1IDIuNzg1NTU0LTQuMTcyMzU0IDMuMjI3ODk1LTQuNTU0OTE5QzMuNTM4NzMtNC44NDE4NDMgMy45NDUyMDUtNS4wMzMxMjYgNC40MTE0NTctNS4wMzMxMjZDNC44ODk2NjQtNS4wMzMxMjYgNS4wNTcwMzYtNC42NzQ0NzEgNS4wNTcwMzYtNC4xOTYyNjRDNS4wNTcwMzYtMy41MTQ4MTkgNC41NjY4NzQtMi4xNTE5MyA0LjMyNzc3MS0xLjUwNjM1MUM0LjIyMDE3NC0xLjIxOTQyNyA0LjE2MDM5OS0xLjA2NDAxIDQuMTYwMzk5LS44NDg4MTdDNC4xNjAzOTktLjMxMDgzNCA0LjUzMTAwOSAuMTE5NTUyIDUuMTA0ODU3IC4xMTk1NTJDNi4yMTY2ODcgLjExOTU1MiA2LjYzNTExOC0xLjYzNzg1OCA2LjYzNTExOC0xLjcwOTU4OUM2LjYzNTExOC0xLjc2OTM2NSA2LjU4NzI5OC0xLjgxNzE4NiA2LjUxNTU2Ny0xLjgxNzE4NkM2LjQwNzk3LTEuODE3MTg2IDYuMzk2MDE1LTEuNzgxMzIgNi4zMzYyMzktMS41NzgwODJDNi4wNjEyNy0uNTk3NzU4IDUuNjA2OTc0LS4xMTk1NTIgNS4xNDA3MjItLjExOTU1MkM1LjAyMTE3MS0uMTE5NTUyIDQuODI5ODg4LS4xMzE1MDcgNC44Mjk4ODgtLjUxNDA3MkM0LjgyOTg4OC0uODEyOTUxIDQuOTYxMzk1LTEuMTcxNjA2IDUuMDMzMTI2LTEuMzM4OTc5QzUuMjcyMjI5LTEuOTk2NTEzIDUuNzc0MzQ2LTMuMzM1NDkyIDUuNzc0MzQ2LTQuMDE2OTM2QzUuNzc0MzQ2LTQuNzM0MjQ3IDUuMzU1OTE1LTUuMjcyMjI5IDQuNDQ3MzIzLTUuMjcyMjI5QzMuMzgzMzEzLTUuMjcyMjI5IDIuODIxNDItNC41MTkwNTQgMi42MDYyMjctNC4yMjAxNzRDMi41NzAzNjEtNC45MDE2MTkgMi4wODAxOTktNS4yNzIyMjkgMS41NTQxNzItNS4yNzIyMjlDMS4xNzE2MDYtNS4yNzIyMjkgLjkwODU5My01LjA0NTA4MSAuNzA1MzU1LTQuNjM4NjA1Qy40OTAxNjItNC4yMDgyMTkgLjMyMjc5LTMuNDkwOTA5IC4zMjI3OS0zLjQ0MzA4OFMuMzcwNjEtMy4zMzU0OTIgLjQ1NDI5Ni0zLjMzNTQ5MkMuNTQ5OTM4LTMuMzM1NDkyIC41NjE4OTMtMy4zNDc0NDcgLjYzMzYyNC0zLjYyMjQxNkMuODI0OTA3LTQuMzUxNjgxIDEuMDQwMS01LjAzMzEyNiAxLjUxODMwNi01LjAzMzEyNkMxLjc5MzI3NS01LjAzMzEyNiAxLjg4ODkxNy00Ljg0MTg0MyAxLjg4ODkxNy00LjQ4MzE4OEMxLjg4ODkxNy00LjIyMDE3NCAxLjc2OTM2NS0zLjc1MzkyMyAxLjY4NTY3OS0zLjM4MzMxM0wxLjM1MDkzNC0yLjA5MjE1NEMxLjMwMzExMy0xLjg2NTAwNiAxLjE3MTYwNi0xLjMyNzAyNCAxLjExMTgzMS0xLjExMTgzMUMxLjAyODE0NC0uODAwOTk2IC44OTY2MzgtLjIzOTEwMyAuODk2NjM4LS4xNzkzMjhDLjg5NjYzOC0uMDExOTU1IDEuMDI4MTQ0IC4xMTk1NTIgMS4yMDc0NzIgLjExOTU1MkMxLjM1MDkzNCAuMTE5NTUyIDEuNTE4MzA2IC4wNDc4MjEgMS42MTM5NDgtLjEzMTUwN0MxLjYzNzg1OC0uMTkxMjgzIDEuNzQ1NDU1LS42MDk3MTQgMS44MDUyMy0uODQ4ODE3TDIuMDY4MjQ0LTEuOTI0NzgyTDIuNDYyNzY1LTMuNTAyODY0WicvPgo8cGF0aCBpZD0nZzAtMTExJyBkPSdNNS40NTE1NTctMy4yODc2NzFDNS40NTE1NTctNC40MjM0MTIgNC43MTAzMzYtNS4yNzIyMjkgMy42MjI0MTYtNS4yNzIyMjlDMi4wNDQzMzQtNS4yNzIyMjkgLjQ5MDE2Mi0zLjU1MDY4NSAuNDkwMTYyLTEuODY1MDA2Qy40OTAxNjItLjcyOTI2NSAxLjIzMTM4MiAuMTE5NTUyIDIuMzE5MzAzIC4xMTk1NTJDMy45MDkzNCAuMTE5NTUyIDUuNDUxNTU3LTEuNjAxOTkzIDUuNDUxNTU3LTMuMjg3NjcxWk0yLjMzMTI1OC0uMTE5NTUyQzEuNzMzNDk5LS4xMTk1NTIgMS4yOTExNTgtLjU5Nzc1OCAxLjI5MTE1OC0xLjQzNDYyQzEuMjkxMTU4LTEuOTg0NTU4IDEuNTc4MDgyLTMuMjAzOTg1IDEuOTEyODI3LTMuODAxNzQzQzIuNDUwODA5LTQuNzIyMjkxIDMuMTIwMjk5LTUuMDMzMTI2IDMuNjEwNDYxLTUuMDMzMTI2QzQuMTk2MjY0LTUuMDMzMTI2IDQuNjUwNTYtNC41NTQ5MTkgNC42NTA1Ni0zLjcxODA1N0M0LjY1MDU2LTMuMjM5ODUxIDQuMzk5NTAyLTEuOTYwNjQ4IDMuOTQ1MjA1LTEuMjMxMzgyQzMuNDU1MDQ0LS40MzAzODYgMi43OTc1MDktLjExOTU1MiAyLjMzMTI1OC0uMTE5NTUyWicvPgo8cGF0aCBpZD0nZzAtMTE1JyBkPSdNMi43MjU3NzgtMi4zOTEwMzRDMi45MjkwMTYtMi4zNTUxNjggMy4yNTE4MDYtMi4yODM0MzcgMy4zMjM1MzctMi4yNzE0ODJDMy40Nzg5NTQtMi4yMjM2NjEgNC4wMTY5MzYtMi4wMzIzNzkgNC4wMTY5MzYtMS40NTg1MzFDNC4wMTY5MzYtMS4wODc5MiAzLjY4MjE5Mi0uMTE5NTUyIDIuMjk1MzkyLS4xMTk1NTJDMi4wNDQzMzQtLjExOTU1MiAxLjE0NzY5Ni0uMTU1NDE3IC45MDg1OTMtLjgxMjk1MUMxLjM4NjgtLjc1MzE3NiAxLjYyNTkwMy0xLjEyMzc4NiAxLjYyNTkwMy0xLjM4NjhDMS42MjU5MDMtMS42Mzc4NTggMS40NTg1MzEtMS43NjkzNjUgMS4yMTk0MjctMS43NjkzNjVDLjk1NjQxMy0xLjc2OTM2NSAuNjA5NzE0LTEuNTY2MTI3IC42MDk3MTQtMS4wMjgxNDRDLjYwOTcxNC0uMzIyNzkgMS4zMjcwMjQgLjExOTU1MiAyLjI4MzQzNyAuMTE5NTUyQzQuMTAwNjIzIC4xMTk1NTIgNC42Mzg2MDUtMS4yMTk0MjcgNC42Mzg2MDUtMS44NDEwOTZDNC42Mzg2MDUtMi4wMjA0MjMgNC42Mzg2MDUtMi4zNTUxNjggNC4yNTYwNC0yLjczNzczM0MzLjk1NzE2MS0zLjAyNDY1OCAzLjY3MDIzNy0zLjA4NDQzMyAzLjAyNDY1OC0zLjIxNTk0QzIuNzAxODY4LTMuMjg3NjcxIDIuMTg3Nzk2LTMuMzk1MjY4IDIuMTg3Nzk2LTMuOTMzMjVDMi4xODc3OTYtNC4xNzIzNTQgMi40MDI5ODktNS4wMzMxMjYgMy41Mzg3My01LjAzMzEyNkM0LjA0MDg0Ny01LjAzMzEyNiA0LjUzMTAwOS00Ljg0MTg0MyA0LjY1MDU2LTQuNDExNDU3QzQuMTI0NTMzLTQuNDExNDU3IDQuMTAwNjIzLTMuOTU3MTYxIDQuMTAwNjIzLTMuOTQ1MjA1QzQuMTAwNjIzLTMuNjk0MTQ3IDQuMzI3NzcxLTMuNjIyNDE2IDQuNDM1MzY3LTMuNjIyNDE2QzQuNjAyNzQtMy42MjI0MTYgNC45Mzc0ODQtMy43NTM5MjMgNC45Mzc0ODQtNC4yNTYwNFM0LjQ4MzE4OC01LjI3MjIyOSAzLjU1MDY4NS01LjI3MjIyOUMxLjk4NDU1OC01LjI3MjIyOSAxLjU2NjEyNy00LjA0MDg0NyAxLjU2NjEyNy0zLjU1MDY4NUMxLjU2NjEyNy0yLjY0MjA5MiAyLjQ1MDgwOS0yLjQ1MDgwOSAyLjcyNTc3OC0yLjM5MTAzNFonLz4KPC9kZWZzPgo8ZyBpZD0ncGFnZTEnIHRyYW5zZm9ybT0nbWF0cml4KDEuMTMgMCAwIDEuMTMgLTYzLjk4NjA0MyAtNjQuNDEpJz4KPHVzZSB4PSc1Ni40MTMyNjcnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTk5Jy8+Cjx1c2UgeD0nNjEuNDUxMjU2JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0xMTEnLz4KPHVzZSB4PSc2Ny4wNzg2OTMnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTExNScvPgo8dXNlIHg9JzcyLjU5MjY5OScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNDAnLz4KPHVzZSB4PSc3Ny4xNDUwMjUnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTY1Jy8+Cjx1c2UgeD0nODUuOTIwMzcxJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS00MScvPgo8dXNlIHg9JzkwLjQ3MjY5NycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtNTgnLz4KPHVzZSB4PSc5My43MjQzNTgnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTk5Jy8+Cjx1c2UgeD0nOTguNzYyMzQ3JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0xMTEnLz4KPHVzZSB4PScxMDQuMzg5Nzg0JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0xMTUnLz4KPHVzZSB4PScxMDkuOTAzNzknIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTQwJy8+Cjx1c2UgeD0nMTE0LjQ1NjExNicgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtNjYnLz4KPHVzZSB4PScxMjMuOTUyMzc3JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS00MScvPgo8dXNlIHg9JzEzMS4xNjEzNjYnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTQzJy8+Cjx1c2UgeD0nMTQyLjkyMjY4MScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtMTE1Jy8+Cjx1c2UgeD0nMTQ4LjQzNjY4NycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtMTAxJy8+Cjx1c2UgeD0nMTUzLjg2MjEyNycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtMTEwJy8+Cjx1c2UgeD0nMTYwLjg0OTczMycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNDAnLz4KPHVzZSB4PScxNjUuNDAyMDU4JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC02NScvPgo8dXNlIHg9JzE3NC4xNzc0MDUnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTQxJy8+Cjx1c2UgeD0nMTc4LjcyOTczMScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtNTgnLz4KPHVzZSB4PScxODEuOTgxMzkyJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0xMTUnLz4KPHVzZSB4PScxODcuNDk1Mzk4JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0xMDEnLz4KPHVzZSB4PScxOTIuOTIwODM4JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0xMTAnLz4KPHVzZSB4PScxOTkuOTA4NDQzJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS00MCcvPgo8dXNlIHg9JzIwNC40NjA3NjknIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTY2Jy8+Cjx1c2UgeD0nMjEzLjk1NzAzJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS00MScvPgo8dXNlIHg9JzIxOC41MDkzNTYnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTU4Jy8+Cjx1c2UgeD0nMjIxLjc2MTAxNycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtMTE1Jy8+Cjx1c2UgeD0nMjI3LjI3NTAyMycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtMTAxJy8+Cjx1c2UgeD0nMjMyLjcwMDQ2MycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtMTEwJy8+Cjx1c2UgeD0nMjM5LjY4ODA2OScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNDAnLz4KPHVzZSB4PScyNDQuMjQwMzk0JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC02NycvPgo8dXNlIHg9JzI1My40NzQwMDYnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTQxJy8+Cjx1c2UgeD0nMjYxLjM0NzE2MScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNjEnLz4KPHVzZSB4PScyNzMuNzcyNjQyJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS00OScvPgo8L2c+Cjwvc3ZnPg== ;
então vale a relação:
                               a : b : c = 1 : 1 : √2

Boa noite amigos!
Alguma dica? Tentei por trigonometria e geo. plana, mas sem sucesso...


Última edição por Floral Fury em Dom 03 Abr 2022, 12:51, editado 1 vez(es)
Floral Fury
Floral Fury
Jedi
Jedi

Mensagens : 203
Data de inscrição : 06/10/2021
Idade : 21
Localização : SP - Brazil

Ir para o topo Ir para baixo

Resolvido Re: Demonstração de relação trigonométrica.

Mensagem por Elcioschin Ter 29 Mar 2022, 22:53

Um possível caminho:

A + B + C = 180º ---> A + B = 180º - C

cos(A + B) = cos(180º - C) ---> cosA.cosB - senA.senB = - cosC ---> I

sen(A + B) = sen(180º - C) ---> senA.cosB + senB.cosA = senC ---> II

a/senA = b/senB = c/senC ---> III

a² = b² + c² - 2.b.c.cosA ---> IV
b² = a² + c² - 2.a.c.cosB ---> V
c² = a² + b² - 2.a.b.cosC ---> VI
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73164
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Floral Fury gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Demonstração de relação trigonométrica.

Mensagem por joaoZacharias Qua 30 Mar 2022, 10:30

Vou propor uma ideia utilizando desigualdades.

Observe que o triângulo em questão é isósceles e retângulo(deixo por sua conta provar):

[latex]\hat C = 90 \degree \text{ }, \text{ } \hat B = 45 \degree, \text{ } \hat A = 45 \degree[/latex]

Sabendo dessa informação a priori, vamos tentar provar que inevitavelmente tem-se [latex]\hat C = 90 \degree[/latex] e que [latex]\hat A = \hat B[/latex].

Primeira observação:

[latex](I) \text{ } \text{ }1 = cos(A)cos(B) + sen(A)sen(B)sen(C) \le cos(A)cos(B) +sen(A)sen(B) \implies[/latex]
(Demonstração lá embaixo)

[latex]1 \le cos(A -B)[/latex]


Mas sabemos que [latex]cos(A -B ) \le 1[/latex]

[latex]1 \le cos(A-B) \le 1 \implies cos(A-B) = 1 \implies [/latex]

[latex]A - B = (360 \degree)k, \text{ } \text{ } k \in \mathbb{Z}[/latex]

Prove que a única solução possível é k =0 --> A=B(sugestão: os ângulos pertencem a um mesmo triângulo)


Se [latex]A =B[/latex]:

[latex]cos^2 (A) + sen^2 (A)sen(C) = 1, \text{ } \text{ } cos^2 (A) + sen^2(A) = 1 \implies sen(C) = 1[/latex]

Logo C = 90 + 360ºk, k inteiro --> C = 90º

Bom você tem os ângulos praticamente definidos, usando a lei dos senos dá para calcular a razão entre dois lados quaisquer desse triângulo.

Demonstração de (I).

Como A, B e C são ângulos de um triângulo, o valor do seno deles é sempre positivo, portanto:

[latex]sen(A)sen(B) = sen(A)sen(B), \text{ } \text{ } 0 < sen(C) \le 1\implies [/latex]

[latex]sen(A)sen(B )sen(C) \le sen(A)sen(B) \implies [/latex]

[latex]cos(A)cos(B) + sen(A)sen(B)sen(C) \le cos(A)cos(B) +sen(A)sen(B)[/latex]

Bons estudos Smile
joaoZacharias
joaoZacharias
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 134
Data de inscrição : 18/03/2020
Localização : Campinas - SP, BR

Floral Fury gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Demonstração de relação trigonométrica.

Mensagem por Floral Fury Dom 03 Abr 2022, 12:51

Olá amigos!
Antes de mais nada, peço perdão pela demora na resposta... tive um problema e não consegui responder no mesmo dia.

Obrigado pelas respostas, tentarei reproduzir elas no papel! Very Happy
Floral Fury
Floral Fury
Jedi
Jedi

Mensagens : 203
Data de inscrição : 06/10/2021
Idade : 21
Localização : SP - Brazil

joaoZacharias gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Demonstração de relação trigonométrica.

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos