Equações trigonométricas I
2 participantes
PiR2 :: Matemática :: Trigonometria
Página 1 de 2
Página 1 de 2 • 1, 2
Equações trigonométricas I
Se sen α = 2/3, (π/2) < α < π, calcule cos(x + (π/4)).
Observação: π = pi
Observação: π = pi
- Gabarito:
- (-√2/6)√5 + 2
Última edição por Orihara em Ter 29 Set 2015, 21:08, editado 1 vez(es)
Orihara- Mestre Jedi
- Mensagens : 699
Data de inscrição : 18/09/2014
Idade : 29
Localização : Santa Catarina
Re: Equações trigonométricas I
Não compreendo a relação do alpha com a questão. Ao meu ver a questão:
cos(x+(pi/4)) . pi = pi
Implica que x = -pi/4 ou x = 7pi/4
cos(x+(pi/4)) . pi = pi
Implica que x = -pi/4 ou x = 7pi/4
____________________________________________
← → ↛ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇
ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir- Monitor
- Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil
Re: Equações trigonométricas I
Carlos, uma falha minha que não percebi depois da formatação. Não é a função do cosseno "vezes" pi. Aquilo era só pra sinalizar que aquele símbolo ali significa pi.
Editei já.
Editei já.
Orihara- Mestre Jedi
- Mensagens : 699
Data de inscrição : 18/09/2014
Idade : 29
Localização : Santa Catarina
Re: Equações trigonométricas I
Ah sim. Então creio que x = alpha kk
Como sen x = 2/3 e (pi/2) < x < pi, então está no segundo quadrante e cosseno é negativo.
Pela relação fundamental:
cos²x + sen²x = 1
Descobrimos que cos x = -(√5)/3
Então, agora vamos calcular a expressão:
cos (x + (pi/4)) = cos x . cos (pi/4) - sen x . sen (pi/4)=
= (-√5/3).(√2/2) - (2/3) . (√2/2) = (√2/6) . [-2 - √5]=
= -(√2/6) . (2+√5)
Como sen x = 2/3 e (pi/2) < x < pi, então está no segundo quadrante e cosseno é negativo.
Pela relação fundamental:
cos²x + sen²x = 1
Descobrimos que cos x = -(√5)/3
Então, agora vamos calcular a expressão:
cos (x + (pi/4)) = cos x . cos (pi/4) - sen x . sen (pi/4)=
= (-√5/3).(√2/2) - (2/3) . (√2/2) = (√2/6) . [-2 - √5]=
= -(√2/6) . (2+√5)
____________________________________________
← → ↛ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇
ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir- Monitor
- Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil
Re: Equações trigonométricas I
Vou crer nisso também!
Estou deveras decepcionado com a quantidade de erros grotescos na gramática, formatação, montagem de questões (como esta por exemplo) além de diversos erros no gabarito (isso em praticamente todos os livros da coleção Noções de Matemática).
Obrigado mais uma vez.
Estou deveras decepcionado com a quantidade de erros grotescos na gramática, formatação, montagem de questões (como esta por exemplo) além de diversos erros no gabarito (isso em praticamente todos os livros da coleção Noções de Matemática).
Obrigado mais uma vez.
Orihara- Mestre Jedi
- Mensagens : 699
Data de inscrição : 18/09/2014
Idade : 29
Localização : Santa Catarina
Re: Equações trigonométricas I
Eu imediatamente estranhei o gabarito sem parênteses.
Cosseno sempre varia de -1 até 1. A expressão tem +2, ou seja, a parte negativa deveria ser menor que -1 para compensar, o que não ocorre.
Cosseno sempre varia de -1 até 1. A expressão tem +2, ou seja, a parte negativa deveria ser menor que -1 para compensar, o que não ocorre.
____________________________________________
← → ↛ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇
ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir- Monitor
- Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil
Re: Equações trigonométricas I
Carlos, fui passar os cálculos para o papel e acabei travando no cálculo da expressão.
Você poderia detalhar mais os passos realizados? Acho que estou me perdendo em alguma propriedade.
Você poderia detalhar mais os passos realizados? Acho que estou me perdendo em alguma propriedade.
Orihara- Mestre Jedi
- Mensagens : 699
Data de inscrição : 18/09/2014
Idade : 29
Localização : Santa Catarina
Re: Equações trigonométricas I
Tem no tópico abaixo que mostra:
Demonstrações de identidades trigonométricas
Aí então:
Creio que assim está melhor de enxergar. Não mudei a ordem, então é só manipulação. Se ainda estiver confuso retorne.
Demonstrações de identidades trigonométricas
Aí então:
Creio que assim está melhor de enxergar. Não mudei a ordem, então é só manipulação. Se ainda estiver confuso retorne.
____________________________________________
← → ↛ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇
ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir- Monitor
- Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil
Re: Equações trigonométricas I
As identidades eu já conheço.
O meu problema está ali na subtração que envolve a multiplicação das raízes (segunda linha a partir do "aí então:").
O meu problema está ali na subtração que envolve a multiplicação das raízes (segunda linha a partir do "aí então:").
Orihara- Mestre Jedi
- Mensagens : 699
Data de inscrição : 18/09/2014
Idade : 29
Localização : Santa Catarina
Re: Equações trigonométricas I
____________________________________________
← → ↛ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇
ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir- Monitor
- Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil
Página 1 de 2 • 1, 2
Tópicos semelhantes
» equações trigonometricas
» Equações trigonométricas
» Equações trigonométricas
» Equações trigonométricas
» Equações trigonométricas III
» Equações trigonométricas
» Equações trigonométricas
» Equações trigonométricas
» Equações trigonométricas III
PiR2 :: Matemática :: Trigonometria
Página 1 de 2
Permissões neste sub-fórum
Não podes responder a tópicos