Comprimento
3 participantes
Página 1 de 1
Comprimento
Na figura abaixo, determine o comprimento da corrente que envolve as duas rodas, sabendo que o raio da roda menor mede 2cm e o raio da roda maior, 4 cm, e a distância entre os centros das duas rodas mede 12 cm.
Tentei fazer:
1) sendo o triângulo retângulo com ângulos de 90º, 30º e 60º, apliquei o sen
para a circunferência de r= 4--> sen 60º=x/4---> V3/2=x/4-->2V3 como são dois triângulos, 4V3.
para a circunferência de r= 2--> sen 60º=x/2---> V3/2=x/2-->V3 como são dois triângulos, 2V3.
2) apliquei a fórmula do comprimento(C=2.pi.r) resultando em 8pi e 4pi
3) 12pi - 6V3--> 3(4pi- 2V3)
- Spoiler:
- Resposta: 4(3V3+2.pi) cm
Tentei fazer:
1) sendo o triângulo retângulo com ângulos de 90º, 30º e 60º, apliquei o sen
para a circunferência de r= 4--> sen 60º=x/4---> V3/2=x/4-->2V3 como são dois triângulos, 4V3.
para a circunferência de r= 2--> sen 60º=x/2---> V3/2=x/2-->V3 como são dois triângulos, 2V3.
2) apliquei a fórmula do comprimento(C=2.pi.r) resultando em 8pi e 4pi
3) 12pi - 6V3--> 3(4pi- 2V3)
Anner- Recebeu o sabre de luz
- Mensagens : 189
Data de inscrição : 24/02/2015
Idade : 26
Localização : Minas Gerais
Re: Comprimento
Você acertou que os ângulos são de 60°. Então temos:
arcos menores -----> BC = AD = 120° = 2pi/3
arcos maiores -----> BC = AD = 240° = 4pi/3
comprimento dos arcos maiores -----> L' = 2×4pi/3 + 4×4pi/3 = 8pi
comprimento das tangentes -----> L" = 2×6.V3 = 12.V3
comprimento da correia -----> L = L' + L" ----> L = 4 (3.V3 + 2pi) cm
arcos menores -----> BC = AD = 120° = 2pi/3
arcos maiores -----> BC = AD = 240° = 4pi/3
comprimento dos arcos maiores -----> L' = 2×4pi/3 + 4×4pi/3 = 8pi
comprimento das tangentes -----> L" = 2×6.V3 = 12.V3
comprimento da correia -----> L = L' + L" ----> L = 4 (3.V3 + 2pi) cm
Medeiros- Grupo
Velhos amigos do Fórum - Mensagens : 10547
Data de inscrição : 01/09/2009
Idade : 72
Localização : Santos, SP, BR
Re: Comprimento
Medeiros,
Será que poderia fazer assim?
Sen 60=x/8
Sendo a hipotenusa da roda maior =8
X=4V3 como são triângulos 8V3
Sen 60=y/4
Sendo y a hipotenusa da roda menor =4
Y=2V3 como são dois triângulos 4V3
Somando dá 12V3.
A minha única dúvida é quanto considerar a hipotenusa como o dobro de cada raio. O que você acha?
Será que poderia fazer assim?
Sen 60=x/8
Sendo a hipotenusa da roda maior =8
X=4V3 como são triângulos 8V3
Sen 60=y/4
Sendo y a hipotenusa da roda menor =4
Y=2V3 como são dois triângulos 4V3
Somando dá 12V3.
A minha única dúvida é quanto considerar a hipotenusa como o dobro de cada raio. O que você acha?
vscarv- Jedi
- Mensagens : 424
Data de inscrição : 12/03/2014
Idade : 28
Localização : SP
Tópicos semelhantes
» (UFU/1994) Determine o comprimento da sombra da régua (de comprimento h)...
» comprimento BN
» o comprimento de PD
» Comprimento
» Comprimento
» comprimento BN
» o comprimento de PD
» Comprimento
» Comprimento
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos