PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Menor valor possível

3 participantes

Ir para baixo

Menor valor possível Empty Menor valor possível

Mensagem por Paulo2013 Dom 17 Mar 2013, 18:34

Considere um número complexo z tal que:

|z+3+4i|=14

Determine o menor valor possível para |z|.

Spoiler:

Paulo2013
Padawan
Padawan

Mensagens : 67
Data de inscrição : 04/02/2013
Idade : 28
Localização : Canoas

Ir para o topo Ir para baixo

Menor valor possível Empty Re: Menor valor possível

Mensagem por JOAO [ITA] Dom 17 Mar 2013, 23:09

Acho que eu consegui uma solução geométrica.

Antes de tudo, desenvolvamos um pouco a equação |z+3+4i|=14 .
Para isso, adotarei z = a + b.i .

|z+3+4i|=14 => |a + b.i + 3 + 4.i| = 14 <=> |(a + 3) + (b + 4).i| = 14 =>

Adotarei, a partir daqui, (a + 3) + (b + 4).i = z' .
Assim: |z'| = 14 .

Plotarei, agora, z e z' no plano de Argand-Gauss.

Menor valor possível Problemsolve



Donde z' é dado pelo ponto ( (a + 3), (b + 4) ) , z é dado pelo ponto (a,b) e β é o ângulo formado entre |z| e a distância entre z e z'.

Observando a figura, pode se perceber que a distância entre os complexos z e z' é igual a hipotenusa de um triângulo formado por lados 3 e 4, ou seja, a distância entre z e z' é igual a 5.

A partir da figura me veio a seguinte pergunta: Será que β tem alguma relação com o valor de |z| ?

Pensei um pouco e conclui que sim.

Perceba que se β for um ângulo raso então |z| assume seu valor mínimo!

Considerando, então, β igual a 180º, temos que |z|(mín) é dado por: 14 - 5 = 9 .

As demonstrações são análogas se os valores pertencerem a outros quadrantes.


Obs: Antes de encontrar essa solução eu tentei bastante encontrar uma solução puramente algébrica, mas não logrei êxito.
Sendo assim, se alguém encontrar uma peço que, por favor, poste-a aqui.
JOAO [ITA]
JOAO [ITA]
Fera
Fera

Mensagens : 866
Data de inscrição : 25/02/2012
Idade : 27
Localização : São José dos Campos,SP,Brasil

Ir para o topo Ir para baixo

Menor valor possível Empty Re: Menor valor possível

Mensagem por hygorvv Seg 18 Mar 2013, 01:24

seja o complexo 3+4i=w, logo |w|=5
Seja ainda o vetor w=(3,4) e que o complxo z também representado por um vetor.
Temos que:

||w+z||²=||w||²+2.w.z+||z||²=14²
Sabemos pela desigualdade de Cauchy-Schwarz que |u.v|≤||u||.||v||
Assim:
||w||²+2||w||.||z||+||z||²≥14² (pois z.w≤|z.w|≤||z||.||w||)
Como queremos igualdade (para ser o menor valor):
||w||²+2||w||.||z||+||z||²=14²
(||w||+||z||)²=14²
Encontramos como solução
||z||=9 ou ||z||=-19

Como ||z||≥0
||z||=9

Fica uma solução alternativa.
Espero que ajude e seja isso.


Última edição por hygorvv em Seg 18 Mar 2013, 07:08, editado 1 vez(es)

hygorvv
Elite Jedi
Elite Jedi

Mensagens : 1721
Data de inscrição : 15/03/2010
Idade : 35
Localização : Vila Velha

Ir para o topo Ir para baixo

Menor valor possível Empty Re: Menor valor possível

Mensagem por JOAO [ITA] Seg 18 Mar 2013, 02:05

Bela solução, hygorvv.
JOAO [ITA]
JOAO [ITA]
Fera
Fera

Mensagens : 866
Data de inscrição : 25/02/2012
Idade : 27
Localização : São José dos Campos,SP,Brasil

Ir para o topo Ir para baixo

Menor valor possível Empty Re: Menor valor possível

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos