PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Determinação dos valores do ângulo que não anulem a função

2 participantes

Ir para baixo

Determinação dos valores do ângulo que não anulem a função Empty Determinação dos valores do ângulo que não anulem a função

Mensagem por Gabriela Carolina Qui 10 maio 2012, 20:37

Determine todos os valores de α para os quais a função f(x) = x² + (cosα)x + 1/8 não se anulará para quaisquer que sejam os valores de x real sabendo que α pertence ao primeiro quadrante.

Resp: pi/4 < α
pale
Gabriela Carolina
Gabriela Carolina
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 124
Data de inscrição : 04/03/2012
Idade : 30
Localização : Uberlândia, Minas Gerais, Brasil

Ir para o topo Ir para baixo

Determinação dos valores do ângulo que não anulem a função Empty Re: Determinação dos valores do ângulo que não anulem a função

Mensagem por abelardo Qui 10 maio 2012, 22:03



Como o ''argumento'' a pertence ao primeiro quadrante, então
abelardo
abelardo
Grupo
Velhos amigos do Fórum

Grupo Velhos amigos do Fórum

Mensagens : 777
Data de inscrição : 12/03/2011
Idade : 32
Localização : Sertânia, Pernambuco, Brasil

Ir para o topo Ir para baixo

Determinação dos valores do ângulo que não anulem a função Empty Re: Determinação dos valores do ângulo que não anulem a função

Mensagem por Gabriela Carolina Dom 13 maio 2012, 14:29

entendi... mas acho q seria v2/2 ali no final, certo?
mas já acabou com minha dúvida! Muito obrigada
Very Happy
Gabriela Carolina
Gabriela Carolina
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 124
Data de inscrição : 04/03/2012
Idade : 30
Localização : Uberlândia, Minas Gerais, Brasil

Ir para o topo Ir para baixo

Determinação dos valores do ângulo que não anulem a função Empty Re: Determinação dos valores do ângulo que não anulem a função

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos