PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

ITA - Teoria dos Conjuntos

4 participantes

Ir para baixo

Resolvido ITA - Teoria dos Conjuntos

Mensagem por Valéria Oliveira Qui 3 Fev - 5:52

Analise a existência de conjuntos A e B, ambos não vazios, tais que [latex]\left ( A - B \right ) \cup \left ( B - A \right ) = A[/latex]






Minha resolução foi a seguinte;

[latex]\left ( A - B \right ) \subset A[/latex]


[latex]\left ( B-A \right ) \subset A \Leftrightarrow B=\varnothing [/latex]

 
portanto, não existem conjuntos A e B não vazios que satisfazem a condição dada.

Essa resolução é válida??


Última edição por Valéria Oliveira em Qui 3 Fev - 11:29, editado 1 vez(es)
Valéria Oliveira
Valéria Oliveira
Iniciante

Mensagens : 34
Data de inscrição : 05/01/2022
Idade : 20
Localização : São José dos Campos, SP

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por joaoZacharias Qui 3 Fev - 9:10

Olá Valéria Oliveira;

A relação de bi-implicância que você propôs está incorreta, abaixo segue o máximo que você poderia escrever tendo como única setença de partida que [latex]\left ( B-A \right ) \subset A[/latex]:

[latex]\left ( B-A \right ) \subset A \Leftrightarrow \color{red}{(B - A)} =\varnothing [/latex]

Apenas considerando o fato [latex]\left ( B-A \right ) \subset A[/latex], observe que o conjunto [latex]B = A [/latex] satisfaz [latex](A-A) \subset A [/latex], então [latex]B[/latex] não é necessariamente vazio. Provar a relação de bi-implicância não é realmente necessário, só a relação de implicância já seria o suficiente para abordar a questão.

[latex]\left ( B-A \right ) \subset A \Rightarrow (B - A) =\varnothing [/latex]

Tenta refazer o pproblema. Deixo abaixo o resto da resolução.

Spoiler:

Bons estudos Smile
joaoZacharias
joaoZacharias
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 134
Data de inscrição : 18/03/2020
Localização : Campinas - SP, BR

aitchrpi e Valéria Oliveira gostam desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por Valéria Oliveira Qui 3 Fev - 11:29

Muitíssimo obrigada, João!!  ITA - Teoria dos Conjuntos  1f600
Valéria Oliveira
Valéria Oliveira
Iniciante

Mensagens : 34
Data de inscrição : 05/01/2022
Idade : 20
Localização : São José dos Campos, SP

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por Floral Fury Qua 16 Fev - 9:18

Bom dia colegas!
Perdão reviver o tópico, mas estou com dúvida no seguinte:

Poderíamos ter feito o caminho considerando:
ITA - Teoria dos Conjuntos  Svg+xml;base64,PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPCEtLSBHZW5lcmF0ZWQgYnkgQ29kZUNvZ3Mgd2l0aCBkdmlzdmdtIDIuMTEuMSAtLT4KPHN2ZyB2ZXJzaW9uPScxLjEnIHhtbG5zPSdodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZycgeG1sbnM6eGxpbms9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkveGxpbmsnIHdpZHRoPScxNzEuMTgwNDcycHQnIGhlaWdodD0nMTMuNTIyODQ5cHQnIHZpZXdCb3g9Jy0uMjM5MDUxIC0uMjQwNjM1IDE3MS4xODA0NzIgMTMuNTIyODQ5Jz4KPGRlZnM+CjxwYXRoIGlkPSdnMC0wJyBkPSdNNy44Nzg0NTYtMi43NDk2ODlDOC4wODE2OTQtMi43NDk2ODkgOC4yOTY4ODctMi43NDk2ODkgOC4yOTY4ODctMi45ODg3OTJTOC4wODE2OTQtMy4yMjc4OTUgNy44Nzg0NTYtMy4yMjc4OTVIMS40MTA3MUMxLjIwNzQ3Mi0zLjIyNzg5NSAuOTkyMjc5LTMuMjI3ODk1IC45OTIyNzktMi45ODg3OTJTMS4yMDc0NzItMi43NDk2ODkgMS40MTA3MS0yLjc0OTY4OUg3Ljg3ODQ1NlonLz4KPHBhdGggaWQ9J2cwLTI2JyBkPSdNNy44Nzg0NTYtNS45Nzc1ODRDOC4wODE2OTQtNS45Nzc1ODQgOC4yOTY4ODctNS45Nzc1ODQgOC4yOTY4ODctNi4yMTY2ODdTOC4wODE2OTQtNi40NTU3OTEgNy44Nzg0NTYtNi40NTU3OTFINC42NjI1MTZDMi42MTgxODItNi40NTU3OTEgLjk5MjI3OS00LjkwMTYxOSAuOTkyMjc5LTIuOTg4NzkyUzIuNjE4MTgyIC40NzgyMDcgNC42NjI1MTYgLjQ3ODIwN0g3Ljg3ODQ1NkM4LjA4MTY5NCAuNDc4MjA3IDguMjk2ODg3IC40NzgyMDcgOC4yOTY4ODcgLjIzOTEwM1M4LjA4MTY5NCAwIDcuODc4NDU2IDBINC42ODY0MjZDMi44MjE0MiAwIDEuNDcwNDg2LTEuMzg2OCAxLjQ3MDQ4Ni0yLjk4ODc5MlMyLjgyMTQyLTUuOTc3NTg0IDQuNjg2NDI2LTUuOTc3NTg0SDcuODc4NDU2WicvPgo8cGF0aCBpZD0nZzAtNDQnIGQ9J00zLjAzNjYxMy00LjM4NzU0N0MzLjcxODA1Ny01LjE2NDYzMyA0LjA3NjcxMi02LjAzNzM2IDQuMDc2NzEyLTYuMTMzMDAxQzQuMDc2NzEyLTYuMjc2NDYzIDMuOTQ1MjA1LTYuMjc2NDYzIDMuODM3NjA5LTYuMjc2NDYzQzMuNjU4MjgxLTYuMjc2NDYzIDMuNjU4MjgxLTYuMjY0NTA4IDMuNTUwNjg1LTYuMDI1NDA1QzMuMDYwNTIzLTQuOTI1NTI5IDIuMTc1ODQxLTMuODI1NjU0IC42MDk3MTQtMy4xNTYxNjRDLjQ0MjM0MS0zLjA4NDQzMyAuNDA2NDc2LTMuMDcyNDc4IC40MDY0NzYtMi45ODg3OTJDLjQwNjQ3Ni0yLjk2NDg4MiAuNDA2NDc2LTIuOTQwOTcxIC40MTg0MzEtMi45MTcwNjFDLjQ0MjM0MS0yLjg5MzE1MSAuNDU0Mjk2LTIuODgxMTk2IC42OTM0LTIuNzczNTk5QzIuMDA4NDY4LTIuMjIzNjYxIDIuOTg4NzkyLTEuMjA3NDcyIDMuNTk4NTA2IC4xNzkzMjhDMy42NDYzMjYgLjI4NjkyNCAzLjY5NDE0NyAuMjk4ODc5IDMuODM3NjA5IC4yOTg4NzlDMy45NDUyMDUgLjI5ODg3OSA0LjA3NjcxMiAuMjk4ODc5IDQuMDc2NzEyIC4xNTU0MTdDNC4wNzY3MTIgLjA1OTc3NiAzLjcxODA1Ny0uODEyOTUxIDMuMDM2NjEzLTEuNTkwMDM3SDguOTA2NkM4LjIyNTE1Ni0uODEyOTUxIDcuODY2NTAxIC4wNTk3NzYgNy44NjY1MDEgLjE1NTQxN0M3Ljg2NjUwMSAuMjk4ODc5IDcuOTk4MDA3IC4yOTg4NzkgOC4xMDU2MDQgLjI5ODg3OUM4LjI4NDkzMiAuMjk4ODc5IDguMjg0OTMyIC4yODY5MjQgOC4zOTI1MjggLjA0NzgyMUM4Ljg4MjY5LTEuMDUyMDU1IDkuNzY3MzcyLTIuMTUxOTMgMTEuMzMzNDk5LTIuODIxNDJDMTEuNTAwODcyLTIuODkzMTUxIDExLjUzNjczNy0yLjkwNTEwNiAxMS41MzY3MzctMi45ODg3OTJDMTEuNTM2NzM3LTMuMDEyNzAyIDExLjUzNjczNy0zLjAzNjYxMyAxMS41MjQ3ODItMy4wNjA1MjNDMTEuNTAwODcyLTMuMDg0NDMzIDExLjQ4ODkxNy0zLjA5NjM4OSAxMS4yNDk4MTMtMy4yMDM5ODVDOS45MzQ3NDUtMy43NTM5MjMgOC45NTQ0MjEtNC43NzAxMTIgOC4zNDQ3MDctNi4xNTY5MTJDOC4yOTY4ODctNi4yNjQ1MDggOC4yNDkwNjYtNi4yNzY0NjMgOC4xMDU2MDQtNi4yNzY0NjNDNy45OTgwMDctNi4yNzY0NjMgNy44NjY1MDEtNi4yNzY0NjMgNy44NjY1MDEtNi4xMzMwMDFDNy44NjY1MDEtNi4wMzczNiA4LjIyNTE1Ni01LjE2NDYzMyA4LjkwNjYtNC4zODc1NDdIMy4wMzY2MTNaTTIuNTcwMzYxLTIuMDY4MjQ0QzIuMjExNzA2LTIuNDE0OTQ0IDEuODA1MjMtMi43MDE4NjggMS4zMTUwNjgtMi45ODg3OTJDMS45NzI2MDMtMy4zNzEzNTcgMi4zMzEyNTgtMy42NzAyMzcgMi41NzAzNjEtMy45MDkzNEg5LjM3Mjg1MkM5LjczMTUwNy0zLjU2MjY0IDEwLjEzNzk4My0zLjI3NTcxNiAxMC42MjgxNDQtMi45ODg3OTJDOS45NzA2MS0yLjYwNjIyNyA5LjYxMTk1NS0yLjMwNzM0NyA5LjM3Mjg1Mi0yLjA2ODI0NEgyLjU3MDM2MVonLz4KPHBhdGggaWQ9J2cxLTY1JyBkPSdNMi4wMzIzNzktMS4zMjcwMjRDMS42MTM5NDgtLjYyMTY2OSAxLjIwNzQ3Mi0uMzgyNTY1IC42MzM2MjQtLjM0NjdDLjUwMjExNy0uMzM0NzQ1IC40MDY0NzYtLjMzNDc0NSAuNDA2NDc2LS4xMTk1NTJDLjQwNjQ3Ni0uMDQ3ODIxIC40NjYyNTIgMCAuNTQ5OTM4IDBDLjc2NTEzMSAwIDEuMzAzMTEzLS4wMjM5MSAxLjUxODMwNi0uMDIzOTFDMS44NjUwMDYtLjAyMzkxIDIuMjQ3NTcyIDAgMi41ODIzMTYgMEMyLjY1NDA0NyAwIDIuNzk3NTA5IDAgMi43OTc1MDktLjIyNzE0OEMyLjc5NzUwOS0uMzM0NzQ1IDIuNzAxODY4LS4zNDY3IDIuNjMwMTM3LS4zNDY3QzIuMzU1MTY4LS4zNzA2MSAyLjEyODAyLS40NjYyNTIgMi4xMjgwMi0uNzUzMTc2QzIuMTI4MDItLjkyMDU0OCAyLjE5OTc1MS0xLjA1MjA1NSAyLjM1NTE2OC0xLjMxNTA2OEwzLjI2Mzc2MS0yLjgyMTQySDYuMzEyMzI5QzYuMzI0Mjg0LTIuNzEzODIzIDYuMzI0Mjg0LTIuNjE4MTgyIDYuMzM2MjM5LTIuNTEwNTg1QzYuMzcyMTA1LTIuMTk5NzUxIDYuNTE1NTY3LS45NTY0MTMgNi41MTU1NjctLjcyOTI2NUM2LjUxNTU2Ny0uMzcwNjEgNS45MDU4NTMtLjM0NjcgNS43MTQ1Ny0uMzQ2N0M1LjU4MzA2NC0uMzQ2NyA1LjQ1MTU1Ny0uMzQ2NyA1LjQ1MTU1Ny0uMTMxNTA3QzUuNDUxNTU3IDAgNS41NTkxNTMgMCA1LjYzMDg4NCAwQzUuODM0MTIyIDAgNi4wNzMyMjUtLjAyMzkxIDYuMjc2NDYzLS4wMjM5MUg2Ljk1NzkwOEM3LjY4NzE3My0uMDIzOTEgOC4yMTMyIDAgOC4yMjUxNTYgMEM4LjMwODg0MiAwIDguNDQwMzQ5IDAgOC40NDAzNDktLjIyNzE0OEM4LjQ0MDM0OS0uMzQ2NyA4LjMzMjc1Mi0uMzQ2NyA4LjE1MzQyNS0uMzQ2N0M3LjQ5NTg5LS4zNDY3IDcuNDgzOTM1LS40NTQyOTYgNy40NDgwNy0uODEyOTUxTDYuNzE4ODA0LTguMjcyOTc2QzYuNjk0ODk0LTguNTEyMDggNi42NDcwNzMtOC41MzU5OSA2LjUxNTU2Ny04LjUzNTk5QzYuMzk2MDE1LTguNTM1OTkgNi4zMjQyODQtOC41MTIwOCA2LjIxNjY4Ny04LjMzMjc1MkwyLjAzMjM3OS0xLjMyNzAyNFpNMy40NjY5OTktMy4xNjgxMkw1Ljg2OTk4OC03LjE4NTA1Nkw2LjI3NjQ2My0zLjE2ODEySDMuNDY2OTk5WicvPgo8cGF0aCBpZD0nZzEtNjYnIGQ9J000LjM3NTU5Mi03LjM1MjQyOEM0LjQ4MzE4OC03Ljc5NDc3IDQuNTMxMDA5LTcuODE4NjggNC45OTcyNi03LjgxODY4SDYuNTUxNDMyQzcuOTAyMzY2LTcuODE4NjggNy45MDIzNjYtNi42NzA5ODQgNy45MDIzNjYtNi41NjMzODdDNy45MDIzNjYtNS41OTUwMTkgNi45MzM5OTgtNC4zNjM2MzYgNS4zNTU5MTUtNC4zNjM2MzZIMy42MzQzNzFMNC4zNzU1OTItNy4zNTI0MjhaTTYuMzk2MDE1LTQuMjY3OTk1QzcuNjk5MTI4LTQuNTA3MDk4IDguODgyNjktNS40MTU2OTEgOC44ODI2OS02LjUxNTU2N0M4Ljg4MjY5LTcuNDQ4MDcgOC4wNTc3ODMtOC4xNjUzOCA2LjcwNjg0OS04LjE2NTM4SDIuODY5MjRDMi42NDIwOTItOC4xNjUzOCAyLjUzNDQ5Ni04LjE2NTM4IDIuNTM0NDk2LTcuOTM4MjMyQzIuNTM0NDk2LTcuODE4NjggMi42NDIwOTItNy44MTg2OCAyLjgyMTQyLTcuODE4NjhDMy41NTA2ODUtNy44MTg2OCAzLjU1MDY4NS03LjcyMzAzOSAzLjU1MDY4NS03LjU5MTUzMkMzLjU1MDY4NS03LjU2NzYyMSAzLjU1MDY4NS03LjQ5NTg5IDMuNTAyODY0LTcuMzE2NTYzTDEuODg4OTE3LS44ODQ2ODJDMS43ODEzMi0uNDY2MjUyIDEuNzU3NDEtLjM0NjcgLjkyMDU0OC0uMzQ2N0MuNjkzNC0uMzQ2NyAuNTczODQ4LS4zNDY3IC41NzM4NDgtLjEzMTUwN0MuNTczODQ4IDAgLjY0NTU3OSAwIC44ODQ2ODIgMEg0Ljk4NTMwNUM2LjgxNDQ0NiAwIDguMjI1MTU2LTEuMzg2OCA4LjIyNTE1Ni0yLjU5NDI3MUM4LjIyNTE1Ni0zLjU3NDU5NSA3LjM2NDM4NC00LjE3MjM1NCA2LjM5NjAxNS00LjI2Nzk5NVpNNC42OTgzODEtLjM0NjdIMy4wODQ0MzNDMi45MTcwNjEtLjM0NjcgMi44OTMxNTEtLjM0NjcgMi44MjE0Mi0uMzU4NjU1QzIuNjg5OTEzLS4zNzA2MSAyLjY3Nzk1OC0uMzk0NTIxIDIuNjc3OTU4LS40OTAxNjJDMi42Nzc5NTgtLjU3Mzg0OCAyLjcwMTg2OC0uNjQ1NTc5IDIuNzI1Nzc4LS43NTMxNzZMMy41NjI2NC00LjEyNDUzM0g1LjgxMDIxMkM3LjIyMDkyMi00LjEyNDUzMyA3LjIyMDkyMi0yLjgwOTQ2NSA3LjIyMDkyMi0yLjcxMzgyM0M3LjIyMDkyMi0xLjU2NjEyNyA2LjE4MDgyMi0uMzQ2NyA0LjY5ODM4MS0uMzQ2N1onLz4KPHBhdGggaWQ9J2cyLTMxJyBkPSdNNy44MzA2MzUtOC42Nzk0NTJMNy42MjczOTctOC44MjI5MTRMNi44MDI0OTEtNy42MTU0NDJDNi40Njc3NDYtNy44OTA0MTEgNS42NDI4MzktOC40MTY0MzggNC41NTQ5MTktOC40MTY0MzhDMi40MjY4OTktOC40MTY0MzggLjY0NTU3OS02LjUwMzYxMSAuNjQ1NTc5LTQuMDUyODAyQy42NDU1NzktMi44MzMzNzUgMS4xMjM3ODYtMS41NjYxMjcgMi4wOTIxNTQtLjcxNzMxTDEuMjY3MjQ4IC41MTQwNzJMMS40NzA0ODYgLjY1NzUzNEwyLjI4MzQzNy0uNTM3OTgzQzMuMTU2MTY0IC4xMDc1OTcgMy45NjkxMTYgLjI1MTA1OSA0LjU0Mjk2NCAuMjUxMDU5QzYuNjgyOTM5IC4yNTEwNTkgOC40NTIzMDQtMS42NDk4MTMgOC40NTIzMDQtNC4wNTI4MDJDOC40NTIzMDQtNi4xNTY5MTIgNy4xNjExNDYtNy4zMTY1NjMgNy4wMDU3MjktNy40MzYxMTVMNy44MzA2MzUtOC42Nzk0NTJaTTIuMzc5MDc4LTEuMTM1NzQxQzEuODI5MTQxLTEuODc2OTYxIDEuNjEzOTQ4LTIuODA5NDY1IDEuNjEzOTQ4LTQuMDY0NzU3QzEuNjEzOTQ4LTguMDA5OTYzIDQuMTI0NTMzLTguMTc3MzM1IDQuNTQyOTY0LTguMTc3MzM1QzUuNjE4OTI5LTguMTc3MzM1IDYuMjUyNTUzLTcuNTQzNzExIDYuNTM5NDc3LTcuMjU2Nzg3TDIuMzc5MDc4LTEuMTM1NzQxWk02LjcxODgwNC03LjAyOTYzOUM3LjM2NDM4NC02LjEzMzAwMSA3LjQ4MzkzNS00Ljk5NzI2IDcuNDgzOTM1LTQuMDY0NzU3QzcuNDgzOTM1LS4yNjMwMTQgNS4xMTY4MTIgLjAxMTk1NSA0LjU1NDkxOSAuMDExOTU1QzMuNDQzMDg4IC4wMTE5NTUgMi43ODU1NTQtLjY2OTQ4OSAyLjU0NjQ1MS0uOTA4NTkzTDYuNzE4ODA0LTcuMDI5NjM5WicvPgo8cGF0aCBpZD0nZzItNDAnIGQ9J00zLjg4NTQzIDIuOTA1MTA2QzMuODg1NDMgMi44NjkyNCAzLjg4NTQzIDIuODQ1MzMgMy42ODIxOTIgMi42NDIwOTJDMi40ODY2NzUgMS40MzQ2MiAxLjgxNzE4Ni0uNTM3OTgzIDEuODE3MTg2LTIuOTc2ODM3QzEuODE3MTg2LTUuMjk2MTM5IDIuMzc5MDc4LTcuMjkyNjUzIDMuNzY1ODc4LTguNzAzMzYyQzMuODg1NDMtOC44MTA5NTkgMy44ODU0My04LjgzNDg2OSAzLjg4NTQzLTguODcwNzM1QzMuODg1NDMtOC45NDI0NjYgMy44MjU2NTQtOC45NjYzNzYgMy43Nzc4MzMtOC45NjYzNzZDMy42MjI0MTYtOC45NjYzNzYgMi42NDIwOTItOC4xMDU2MDQgMi4wNTYyODktNi45MzM5OThDMS40NDY1NzUtNS43MjY1MjYgMS4xNzE2MDYtNC40NDczMjMgMS4xNzE2MDYtMi45NzY4MzdDMS4xNzE2MDYtMS45MTI4MjcgMS4zMzg5NzktLjQ5MDE2MiAxLjk2MDY0OCAuNzg5MDQxQzIuNjY2MDAyIDIuMjIzNjYxIDMuNjQ2MzI2IDMuMDAwNzQ3IDMuNzc3ODMzIDMuMDAwNzQ3QzMuODI1NjU0IDMuMDAwNzQ3IDMuODg1NDMgMi45NzY4MzcgMy44ODU0MyAyLjkwNTEwNlonLz4KPHBhdGggaWQ9J2cyLTQxJyBkPSdNMy4zNzEzNTctMi45NzY4MzdDMy4zNzEzNTctMy44ODU0MyAzLjI1MTgwNi01LjM2Nzg3IDIuNTgyMzE2LTYuNzU0NjdDMS44NzY5NjEtOC4xODkyOSAuODk2NjM4LTguOTY2Mzc2IC43NjUxMzEtOC45NjYzNzZDLjcxNzMxLTguOTY2Mzc2IC42NTc1MzQtOC45NDI0NjYgLjY1NzUzNC04Ljg3MDczNUMuNjU3NTM0LTguODM0ODY5IC42NTc1MzQtOC44MTA5NTkgLjg2MDc3Mi04LjYwNzcyMUMyLjA1NjI4OS03LjQwMDI0OSAyLjcyNTc3OC01LjQyNzY0NiAyLjcyNTc3OC0yLjk4ODc5MkMyLjcyNTc3OC0uNjY5NDg5IDIuMTYzODg1IDEuMzI3MDI0IC43NzcwODYgMi43Mzc3MzNDLjY1NzUzNCAyLjg0NTMzIC42NTc1MzQgMi44NjkyNCAuNjU3NTM0IDIuOTA1MTA2Qy42NTc1MzQgMi45NzY4MzcgLjcxNzMxIDMuMDAwNzQ3IC43NjUxMzEgMy4wMDA3NDdDLjkyMDU0OCAzLjAwMDc0NyAxLjkwMDg3MiAyLjEzOTk3NSAyLjQ4NjY3NSAuOTY4MzY5QzMuMDk2Mzg5LS4yNTEwNTkgMy4zNzEzNTctMS41NDIyMTcgMy4zNzEzNTctMi45NzY4MzdaJy8+CjxwYXRoIGlkPSdnMi02MScgZD0nTTguMDY5NzM4LTMuODczNDc0QzguMjM3MTExLTMuODczNDc0IDguNDUyMzA0LTMuODczNDc0IDguNDUyMzA0LTQuMDg4NjY3QzguNDUyMzA0LTQuMzE1ODE2IDguMjQ5MDY2LTQuMzE1ODE2IDguMDY5NzM4LTQuMzE1ODE2SDEuMDI4MTQ0Qy44NjA3NzItNC4zMTU4MTYgLjY0NTU3OS00LjMxNTgxNiAuNjQ1NTc5LTQuMTAwNjIzQy42NDU1NzktMy44NzM0NzQgLjg0ODgxNy0zLjg3MzQ3NCAxLjAyODE0NC0zLjg3MzQ3NEg4LjA2OTczOFpNOC4wNjk3MzgtMS42NDk4MTNDOC4yMzcxMTEtMS42NDk4MTMgOC40NTIzMDQtMS42NDk4MTMgOC40NTIzMDQtMS44NjUwMDZDOC40NTIzMDQtMi4wOTIxNTQgOC4yNDkwNjYtMi4wOTIxNTQgOC4wNjk3MzgtMi4wOTIxNTRIMS4wMjgxNDRDLjg2MDc3Mi0yLjA5MjE1NCAuNjQ1NTc5LTIuMDkyMTU0IC42NDU1NzktMS44NzY5NjFDLjY0NTU3OS0xLjY0OTgxMyAuODQ4ODE3LTEuNjQ5ODEzIDEuMDI4MTQ0LTEuNjQ5ODEzSDguMDY5NzM4WicvPgo8L2RlZnM+CjxnIGlkPSdwYWdlMScgdHJhbnNmb3JtPSdtYXRyaXgoMS4xMyAwIDAgMS4xMyAtNjMuOTg2MDQzIC02NC40MSknPgo8dXNlIHg9JzU2LjQxMzI2NycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzItNDAnLz4KPHVzZSB4PSc2MC45NjU1OTMnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTY1Jy8+Cjx1c2UgeD0nNzIuMzk3NjAzJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0wJy8+Cjx1c2UgeD0nODQuMzUyNzY0JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS02NicvPgo8dXNlIHg9JzkzLjg0OTAyNCcgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzItNDEnLz4KPHVzZSB4PScxMDEuNzIyMTgnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTI2Jy8+Cjx1c2UgeD0nMTE0LjM0MTUwNicgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNjUnLz4KPHVzZSB4PScxMjYuNDM3NjgyJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC00NCcvPgo8dXNlIHg9JzE0MS43MTM3MTQnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cyLTQwJy8+Cjx1c2UgeD0nMTQ2LjI2NjAzOScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNjUnLz4KPHVzZSB4PScxNTcuNjk4MDUnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTAnLz4KPHVzZSB4PScxNjkuNjUzMjEnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTY2Jy8+Cjx1c2UgeD0nMTc5LjE0OTQ3MScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzItNDEnLz4KPHVzZSB4PScxODcuMDIyNjI2JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMi02MScvPgo8dXNlIHg9JzE5OS40NDgxMDcnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cyLTMxJy8+CjwvZz4KPC9zdmc+  ?
E se fosse possível, haveria alteração em qual parte da conta?

Obrigado! Very Happy
Floral Fury
Floral Fury
Jedi
Jedi

Mensagens : 203
Data de inscrição : 06/10/2021
Idade : 21
Localização : SP - Brazil

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por joaoZacharias Qua 16 Fev - 9:53

Olá Floral Fury;

Para quaisquer conjuntos A e B a expressão[latex]A-B \subset A[/latex] é sempre verdadeira, então você não consegue obter nenhuma informação útil dela.

Agora quanto a formulação da bi-implicância ITA - Teoria dos Conjuntos  Svg+xml;base64,PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPCEtLSBHZW5lcmF0ZWQgYnkgQ29kZUNvZ3Mgd2l0aCBkdmlzdmdtIDIuMTEuMSAtLT4KPHN2ZyB2ZXJzaW9uPScxLjEnIHhtbG5zPSdodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZycgeG1sbnM6eGxpbms9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkveGxpbmsnIHdpZHRoPScxNzEuMTgwNDcycHQnIGhlaWdodD0nMTMuNTIyODQ5cHQnIHZpZXdCb3g9Jy0uMjM5MDUxIC0uMjQwNjM1IDE3MS4xODA0NzIgMTMuNTIyODQ5Jz4KPGRlZnM+CjxwYXRoIGlkPSdnMC0wJyBkPSdNNy44Nzg0NTYtMi43NDk2ODlDOC4wODE2OTQtMi43NDk2ODkgOC4yOTY4ODctMi43NDk2ODkgOC4yOTY4ODctMi45ODg3OTJTOC4wODE2OTQtMy4yMjc4OTUgNy44Nzg0NTYtMy4yMjc4OTVIMS40MTA3MUMxLjIwNzQ3Mi0zLjIyNzg5NSAuOTkyMjc5LTMuMjI3ODk1IC45OTIyNzktMi45ODg3OTJTMS4yMDc0NzItMi43NDk2ODkgMS40MTA3MS0yLjc0OTY4OUg3Ljg3ODQ1NlonLz4KPHBhdGggaWQ9J2cwLTI2JyBkPSdNNy44Nzg0NTYtNS45Nzc1ODRDOC4wODE2OTQtNS45Nzc1ODQgOC4yOTY4ODctNS45Nzc1ODQgOC4yOTY4ODctNi4yMTY2ODdTOC4wODE2OTQtNi40NTU3OTEgNy44Nzg0NTYtNi40NTU3OTFINC42NjI1MTZDMi42MTgxODItNi40NTU3OTEgLjk5MjI3OS00LjkwMTYxOSAuOTkyMjc5LTIuOTg4NzkyUzIuNjE4MTgyIC40NzgyMDcgNC42NjI1MTYgLjQ3ODIwN0g3Ljg3ODQ1NkM4LjA4MTY5NCAuNDc4MjA3IDguMjk2ODg3IC40NzgyMDcgOC4yOTY4ODcgLjIzOTEwM1M4LjA4MTY5NCAwIDcuODc4NDU2IDBINC42ODY0MjZDMi44MjE0MiAwIDEuNDcwNDg2LTEuMzg2OCAxLjQ3MDQ4Ni0yLjk4ODc5MlMyLjgyMTQyLTUuOTc3NTg0IDQuNjg2NDI2LTUuOTc3NTg0SDcuODc4NDU2WicvPgo8cGF0aCBpZD0nZzAtNDQnIGQ9J00zLjAzNjYxMy00LjM4NzU0N0MzLjcxODA1Ny01LjE2NDYzMyA0LjA3NjcxMi02LjAzNzM2IDQuMDc2NzEyLTYuMTMzMDAxQzQuMDc2NzEyLTYuMjc2NDYzIDMuOTQ1MjA1LTYuMjc2NDYzIDMuODM3NjA5LTYuMjc2NDYzQzMuNjU4MjgxLTYuMjc2NDYzIDMuNjU4MjgxLTYuMjY0NTA4IDMuNTUwNjg1LTYuMDI1NDA1QzMuMDYwNTIzLTQuOTI1NTI5IDIuMTc1ODQxLTMuODI1NjU0IC42MDk3MTQtMy4xNTYxNjRDLjQ0MjM0MS0zLjA4NDQzMyAuNDA2NDc2LTMuMDcyNDc4IC40MDY0NzYtMi45ODg3OTJDLjQwNjQ3Ni0yLjk2NDg4MiAuNDA2NDc2LTIuOTQwOTcxIC40MTg0MzEtMi45MTcwNjFDLjQ0MjM0MS0yLjg5MzE1MSAuNDU0Mjk2LTIuODgxMTk2IC42OTM0LTIuNzczNTk5QzIuMDA4NDY4LTIuMjIzNjYxIDIuOTg4NzkyLTEuMjA3NDcyIDMuNTk4NTA2IC4xNzkzMjhDMy42NDYzMjYgLjI4NjkyNCAzLjY5NDE0NyAuMjk4ODc5IDMuODM3NjA5IC4yOTg4NzlDMy45NDUyMDUgLjI5ODg3OSA0LjA3NjcxMiAuMjk4ODc5IDQuMDc2NzEyIC4xNTU0MTdDNC4wNzY3MTIgLjA1OTc3NiAzLjcxODA1Ny0uODEyOTUxIDMuMDM2NjEzLTEuNTkwMDM3SDguOTA2NkM4LjIyNTE1Ni0uODEyOTUxIDcuODY2NTAxIC4wNTk3NzYgNy44NjY1MDEgLjE1NTQxN0M3Ljg2NjUwMSAuMjk4ODc5IDcuOTk4MDA3IC4yOTg4NzkgOC4xMDU2MDQgLjI5ODg3OUM4LjI4NDkzMiAuMjk4ODc5IDguMjg0OTMyIC4yODY5MjQgOC4zOTI1MjggLjA0NzgyMUM4Ljg4MjY5LTEuMDUyMDU1IDkuNzY3MzcyLTIuMTUxOTMgMTEuMzMzNDk5LTIuODIxNDJDMTEuNTAwODcyLTIuODkzMTUxIDExLjUzNjczNy0yLjkwNTEwNiAxMS41MzY3MzctMi45ODg3OTJDMTEuNTM2NzM3LTMuMDEyNzAyIDExLjUzNjczNy0zLjAzNjYxMyAxMS41MjQ3ODItMy4wNjA1MjNDMTEuNTAwODcyLTMuMDg0NDMzIDExLjQ4ODkxNy0zLjA5NjM4OSAxMS4yNDk4MTMtMy4yMDM5ODVDOS45MzQ3NDUtMy43NTM5MjMgOC45NTQ0MjEtNC43NzAxMTIgOC4zNDQ3MDctNi4xNTY5MTJDOC4yOTY4ODctNi4yNjQ1MDggOC4yNDkwNjYtNi4yNzY0NjMgOC4xMDU2MDQtNi4yNzY0NjNDNy45OTgwMDctNi4yNzY0NjMgNy44NjY1MDEtNi4yNzY0NjMgNy44NjY1MDEtNi4xMzMwMDFDNy44NjY1MDEtNi4wMzczNiA4LjIyNTE1Ni01LjE2NDYzMyA4LjkwNjYtNC4zODc1NDdIMy4wMzY2MTNaTTIuNTcwMzYxLTIuMDY4MjQ0QzIuMjExNzA2LTIuNDE0OTQ0IDEuODA1MjMtMi43MDE4NjggMS4zMTUwNjgtMi45ODg3OTJDMS45NzI2MDMtMy4zNzEzNTcgMi4zMzEyNTgtMy42NzAyMzcgMi41NzAzNjEtMy45MDkzNEg5LjM3Mjg1MkM5LjczMTUwNy0zLjU2MjY0IDEwLjEzNzk4My0zLjI3NTcxNiAxMC42MjgxNDQtMi45ODg3OTJDOS45NzA2MS0yLjYwNjIyNyA5LjYxMTk1NS0yLjMwNzM0NyA5LjM3Mjg1Mi0yLjA2ODI0NEgyLjU3MDM2MVonLz4KPHBhdGggaWQ9J2cxLTY1JyBkPSdNMi4wMzIzNzktMS4zMjcwMjRDMS42MTM5NDgtLjYyMTY2OSAxLjIwNzQ3Mi0uMzgyNTY1IC42MzM2MjQtLjM0NjdDLjUwMjExNy0uMzM0NzQ1IC40MDY0NzYtLjMzNDc0NSAuNDA2NDc2LS4xMTk1NTJDLjQwNjQ3Ni0uMDQ3ODIxIC40NjYyNTIgMCAuNTQ5OTM4IDBDLjc2NTEzMSAwIDEuMzAzMTEzLS4wMjM5MSAxLjUxODMwNi0uMDIzOTFDMS44NjUwMDYtLjAyMzkxIDIuMjQ3NTcyIDAgMi41ODIzMTYgMEMyLjY1NDA0NyAwIDIuNzk3NTA5IDAgMi43OTc1MDktLjIyNzE0OEMyLjc5NzUwOS0uMzM0NzQ1IDIuNzAxODY4LS4zNDY3IDIuNjMwMTM3LS4zNDY3QzIuMzU1MTY4LS4zNzA2MSAyLjEyODAyLS40NjYyNTIgMi4xMjgwMi0uNzUzMTc2QzIuMTI4MDItLjkyMDU0OCAyLjE5OTc1MS0xLjA1MjA1NSAyLjM1NTE2OC0xLjMxNTA2OEwzLjI2Mzc2MS0yLjgyMTQySDYuMzEyMzI5QzYuMzI0Mjg0LTIuNzEzODIzIDYuMzI0Mjg0LTIuNjE4MTgyIDYuMzM2MjM5LTIuNTEwNTg1QzYuMzcyMTA1LTIuMTk5NzUxIDYuNTE1NTY3LS45NTY0MTMgNi41MTU1NjctLjcyOTI2NUM2LjUxNTU2Ny0uMzcwNjEgNS45MDU4NTMtLjM0NjcgNS43MTQ1Ny0uMzQ2N0M1LjU4MzA2NC0uMzQ2NyA1LjQ1MTU1Ny0uMzQ2NyA1LjQ1MTU1Ny0uMTMxNTA3QzUuNDUxNTU3IDAgNS41NTkxNTMgMCA1LjYzMDg4NCAwQzUuODM0MTIyIDAgNi4wNzMyMjUtLjAyMzkxIDYuMjc2NDYzLS4wMjM5MUg2Ljk1NzkwOEM3LjY4NzE3My0uMDIzOTEgOC4yMTMyIDAgOC4yMjUxNTYgMEM4LjMwODg0MiAwIDguNDQwMzQ5IDAgOC40NDAzNDktLjIyNzE0OEM4LjQ0MDM0OS0uMzQ2NyA4LjMzMjc1Mi0uMzQ2NyA4LjE1MzQyNS0uMzQ2N0M3LjQ5NTg5LS4zNDY3IDcuNDgzOTM1LS40NTQyOTYgNy40NDgwNy0uODEyOTUxTDYuNzE4ODA0LTguMjcyOTc2QzYuNjk0ODk0LTguNTEyMDggNi42NDcwNzMtOC41MzU5OSA2LjUxNTU2Ny04LjUzNTk5QzYuMzk2MDE1LTguNTM1OTkgNi4zMjQyODQtOC41MTIwOCA2LjIxNjY4Ny04LjMzMjc1MkwyLjAzMjM3OS0xLjMyNzAyNFpNMy40NjY5OTktMy4xNjgxMkw1Ljg2OTk4OC03LjE4NTA1Nkw2LjI3NjQ2My0zLjE2ODEySDMuNDY2OTk5WicvPgo8cGF0aCBpZD0nZzEtNjYnIGQ9J000LjM3NTU5Mi03LjM1MjQyOEM0LjQ4MzE4OC03Ljc5NDc3IDQuNTMxMDA5LTcuODE4NjggNC45OTcyNi03LjgxODY4SDYuNTUxNDMyQzcuOTAyMzY2LTcuODE4NjggNy45MDIzNjYtNi42NzA5ODQgNy45MDIzNjYtNi41NjMzODdDNy45MDIzNjYtNS41OTUwMTkgNi45MzM5OTgtNC4zNjM2MzYgNS4zNTU5MTUtNC4zNjM2MzZIMy42MzQzNzFMNC4zNzU1OTItNy4zNTI0MjhaTTYuMzk2MDE1LTQuMjY3OTk1QzcuNjk5MTI4LTQuNTA3MDk4IDguODgyNjktNS40MTU2OTEgOC44ODI2OS02LjUxNTU2N0M4Ljg4MjY5LTcuNDQ4MDcgOC4wNTc3ODMtOC4xNjUzOCA2LjcwNjg0OS04LjE2NTM4SDIuODY5MjRDMi42NDIwOTItOC4xNjUzOCAyLjUzNDQ5Ni04LjE2NTM4IDIuNTM0NDk2LTcuOTM4MjMyQzIuNTM0NDk2LTcuODE4NjggMi42NDIwOTItNy44MTg2OCAyLjgyMTQyLTcuODE4NjhDMy41NTA2ODUtNy44MTg2OCAzLjU1MDY4NS03LjcyMzAzOSAzLjU1MDY4NS03LjU5MTUzMkMzLjU1MDY4NS03LjU2NzYyMSAzLjU1MDY4NS03LjQ5NTg5IDMuNTAyODY0LTcuMzE2NTYzTDEuODg4OTE3LS44ODQ2ODJDMS43ODEzMi0uNDY2MjUyIDEuNzU3NDEtLjM0NjcgLjkyMDU0OC0uMzQ2N0MuNjkzNC0uMzQ2NyAuNTczODQ4LS4zNDY3IC41NzM4NDgtLjEzMTUwN0MuNTczODQ4IDAgLjY0NTU3OSAwIC44ODQ2ODIgMEg0Ljk4NTMwNUM2LjgxNDQ0NiAwIDguMjI1MTU2LTEuMzg2OCA4LjIyNTE1Ni0yLjU5NDI3MUM4LjIyNTE1Ni0zLjU3NDU5NSA3LjM2NDM4NC00LjE3MjM1NCA2LjM5NjAxNS00LjI2Nzk5NVpNNC42OTgzODEtLjM0NjdIMy4wODQ0MzNDMi45MTcwNjEtLjM0NjcgMi44OTMxNTEtLjM0NjcgMi44MjE0Mi0uMzU4NjU1QzIuNjg5OTEzLS4zNzA2MSAyLjY3Nzk1OC0uMzk0NTIxIDIuNjc3OTU4LS40OTAxNjJDMi42Nzc5NTgtLjU3Mzg0OCAyLjcwMTg2OC0uNjQ1NTc5IDIuNzI1Nzc4LS43NTMxNzZMMy41NjI2NC00LjEyNDUzM0g1LjgxMDIxMkM3LjIyMDkyMi00LjEyNDUzMyA3LjIyMDkyMi0yLjgwOTQ2NSA3LjIyMDkyMi0yLjcxMzgyM0M3LjIyMDkyMi0xLjU2NjEyNyA2LjE4MDgyMi0uMzQ2NyA0LjY5ODM4MS0uMzQ2N1onLz4KPHBhdGggaWQ9J2cyLTMxJyBkPSdNNy44MzA2MzUtOC42Nzk0NTJMNy42MjczOTctOC44MjI5MTRMNi44MDI0OTEtNy42MTU0NDJDNi40Njc3NDYtNy44OTA0MTEgNS42NDI4MzktOC40MTY0MzggNC41NTQ5MTktOC40MTY0MzhDMi40MjY4OTktOC40MTY0MzggLjY0NTU3OS02LjUwMzYxMSAuNjQ1NTc5LTQuMDUyODAyQy42NDU1NzktMi44MzMzNzUgMS4xMjM3ODYtMS41NjYxMjcgMi4wOTIxNTQtLjcxNzMxTDEuMjY3MjQ4IC41MTQwNzJMMS40NzA0ODYgLjY1NzUzNEwyLjI4MzQzNy0uNTM3OTgzQzMuMTU2MTY0IC4xMDc1OTcgMy45NjkxMTYgLjI1MTA1OSA0LjU0Mjk2NCAuMjUxMDU5QzYuNjgyOTM5IC4yNTEwNTkgOC40NTIzMDQtMS42NDk4MTMgOC40NTIzMDQtNC4wNTI4MDJDOC40NTIzMDQtNi4xNTY5MTIgNy4xNjExNDYtNy4zMTY1NjMgNy4wMDU3MjktNy40MzYxMTVMNy44MzA2MzUtOC42Nzk0NTJaTTIuMzc5MDc4LTEuMTM1NzQxQzEuODI5MTQxLTEuODc2OTYxIDEuNjEzOTQ4LTIuODA5NDY1IDEuNjEzOTQ4LTQuMDY0NzU3QzEuNjEzOTQ4LTguMDA5OTYzIDQuMTI0NTMzLTguMTc3MzM1IDQuNTQyOTY0LTguMTc3MzM1QzUuNjE4OTI5LTguMTc3MzM1IDYuMjUyNTUzLTcuNTQzNzExIDYuNTM5NDc3LTcuMjU2Nzg3TDIuMzc5MDc4LTEuMTM1NzQxWk02LjcxODgwNC03LjAyOTYzOUM3LjM2NDM4NC02LjEzMzAwMSA3LjQ4MzkzNS00Ljk5NzI2IDcuNDgzOTM1LTQuMDY0NzU3QzcuNDgzOTM1LS4yNjMwMTQgNS4xMTY4MTIgLjAxMTk1NSA0LjU1NDkxOSAuMDExOTU1QzMuNDQzMDg4IC4wMTE5NTUgMi43ODU1NTQtLjY2OTQ4OSAyLjU0NjQ1MS0uOTA4NTkzTDYuNzE4ODA0LTcuMDI5NjM5WicvPgo8cGF0aCBpZD0nZzItNDAnIGQ9J00zLjg4NTQzIDIuOTA1MTA2QzMuODg1NDMgMi44NjkyNCAzLjg4NTQzIDIuODQ1MzMgMy42ODIxOTIgMi42NDIwOTJDMi40ODY2NzUgMS40MzQ2MiAxLjgxNzE4Ni0uNTM3OTgzIDEuODE3MTg2LTIuOTc2ODM3QzEuODE3MTg2LTUuMjk2MTM5IDIuMzc5MDc4LTcuMjkyNjUzIDMuNzY1ODc4LTguNzAzMzYyQzMuODg1NDMtOC44MTA5NTkgMy44ODU0My04LjgzNDg2OSAzLjg4NTQzLTguODcwNzM1QzMuODg1NDMtOC45NDI0NjYgMy44MjU2NTQtOC45NjYzNzYgMy43Nzc4MzMtOC45NjYzNzZDMy42MjI0MTYtOC45NjYzNzYgMi42NDIwOTItOC4xMDU2MDQgMi4wNTYyODktNi45MzM5OThDMS40NDY1NzUtNS43MjY1MjYgMS4xNzE2MDYtNC40NDczMjMgMS4xNzE2MDYtMi45NzY4MzdDMS4xNzE2MDYtMS45MTI4MjcgMS4zMzg5NzktLjQ5MDE2MiAxLjk2MDY0OCAuNzg5MDQxQzIuNjY2MDAyIDIuMjIzNjYxIDMuNjQ2MzI2IDMuMDAwNzQ3IDMuNzc3ODMzIDMuMDAwNzQ3QzMuODI1NjU0IDMuMDAwNzQ3IDMuODg1NDMgMi45NzY4MzcgMy44ODU0MyAyLjkwNTEwNlonLz4KPHBhdGggaWQ9J2cyLTQxJyBkPSdNMy4zNzEzNTctMi45NzY4MzdDMy4zNzEzNTctMy44ODU0MyAzLjI1MTgwNi01LjM2Nzg3IDIuNTgyMzE2LTYuNzU0NjdDMS44NzY5NjEtOC4xODkyOSAuODk2NjM4LTguOTY2Mzc2IC43NjUxMzEtOC45NjYzNzZDLjcxNzMxLTguOTY2Mzc2IC42NTc1MzQtOC45NDI0NjYgLjY1NzUzNC04Ljg3MDczNUMuNjU3NTM0LTguODM0ODY5IC42NTc1MzQtOC44MTA5NTkgLjg2MDc3Mi04LjYwNzcyMUMyLjA1NjI4OS03LjQwMDI0OSAyLjcyNTc3OC01LjQyNzY0NiAyLjcyNTc3OC0yLjk4ODc5MkMyLjcyNTc3OC0uNjY5NDg5IDIuMTYzODg1IDEuMzI3MDI0IC43NzcwODYgMi43Mzc3MzNDLjY1NzUzNCAyLjg0NTMzIC42NTc1MzQgMi44NjkyNCAuNjU3NTM0IDIuOTA1MTA2Qy42NTc1MzQgMi45NzY4MzcgLjcxNzMxIDMuMDAwNzQ3IC43NjUxMzEgMy4wMDA3NDdDLjkyMDU0OCAzLjAwMDc0NyAxLjkwMDg3MiAyLjEzOTk3NSAyLjQ4NjY3NSAuOTY4MzY5QzMuMDk2Mzg5LS4yNTEwNTkgMy4zNzEzNTctMS41NDIyMTcgMy4zNzEzNTctMi45NzY4MzdaJy8+CjxwYXRoIGlkPSdnMi02MScgZD0nTTguMDY5NzM4LTMuODczNDc0QzguMjM3MTExLTMuODczNDc0IDguNDUyMzA0LTMuODczNDc0IDguNDUyMzA0LTQuMDg4NjY3QzguNDUyMzA0LTQuMzE1ODE2IDguMjQ5MDY2LTQuMzE1ODE2IDguMDY5NzM4LTQuMzE1ODE2SDEuMDI4MTQ0Qy44NjA3NzItNC4zMTU4MTYgLjY0NTU3OS00LjMxNTgxNiAuNjQ1NTc5LTQuMTAwNjIzQy42NDU1NzktMy44NzM0NzQgLjg0ODgxNy0zLjg3MzQ3NCAxLjAyODE0NC0zLjg3MzQ3NEg4LjA2OTczOFpNOC4wNjk3MzgtMS42NDk4MTNDOC4yMzcxMTEtMS42NDk4MTMgOC40NTIzMDQtMS42NDk4MTMgOC40NTIzMDQtMS44NjUwMDZDOC40NTIzMDQtMi4wOTIxNTQgOC4yNDkwNjYtMi4wOTIxNTQgOC4wNjk3MzgtMi4wOTIxNTRIMS4wMjgxNDRDLjg2MDc3Mi0yLjA5MjE1NCAuNjQ1NTc5LTIuMDkyMTU0IC42NDU1NzktMS44NzY5NjFDLjY0NTU3OS0xLjY0OTgxMyAuODQ4ODE3LTEuNjQ5ODEzIDEuMDI4MTQ0LTEuNjQ5ODEzSDguMDY5NzM4WicvPgo8L2RlZnM+CjxnIGlkPSdwYWdlMScgdHJhbnNmb3JtPSdtYXRyaXgoMS4xMyAwIDAgMS4xMyAtNjMuOTg2MDQzIC02NC40MSknPgo8dXNlIHg9JzU2LjQxMzI2NycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzItNDAnLz4KPHVzZSB4PSc2MC45NjU1OTMnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTY1Jy8+Cjx1c2UgeD0nNzIuMzk3NjAzJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0wJy8+Cjx1c2UgeD0nODQuMzUyNzY0JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS02NicvPgo8dXNlIHg9JzkzLjg0OTAyNCcgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzItNDEnLz4KPHVzZSB4PScxMDEuNzIyMTgnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTI2Jy8+Cjx1c2UgeD0nMTE0LjM0MTUwNicgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNjUnLz4KPHVzZSB4PScxMjYuNDM3NjgyJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC00NCcvPgo8dXNlIHg9JzE0MS43MTM3MTQnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cyLTQwJy8+Cjx1c2UgeD0nMTQ2LjI2NjAzOScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNjUnLz4KPHVzZSB4PScxNTcuNjk4MDUnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTAnLz4KPHVzZSB4PScxNjkuNjUzMjEnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTY2Jy8+Cjx1c2UgeD0nMTc5LjE0OTQ3MScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzItNDEnLz4KPHVzZSB4PScxODcuMDIyNjI2JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMi02MScvPgo8dXNlIHg9JzE5OS40NDgxMDcnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cyLTMxJy8+CjwvZz4KPC9zdmc+, existe imprecisão. Tome como exemplo os conjuntos A ={1} e B = {2}, por consequência A -B = {1}.

Note que [latex]\{1\} \subset \text \{1\}[/latex], mas que [latex]A-B \neq \varnothing[/latex]

A relação de implicância no sentido indireto da bi-implicância prosposta é verídica, mas ela não tem utilidade para discutir o problema:

[latex](A - B) = \varnothing \implies (A- B) \subset A[/latex]
joaoZacharias
joaoZacharias
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 134
Data de inscrição : 18/03/2020
Localização : Campinas - SP, BR

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por Floral Fury Qua 16 Fev - 20:12

Ahhh sim, entendi.
Obg pela ajuda colega João!

Boa noite e abraços! Very Happy
Floral Fury
Floral Fury
Jedi
Jedi

Mensagens : 203
Data de inscrição : 06/10/2021
Idade : 21
Localização : SP - Brazil

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por futuromercante Qua 9 Out - 19:37

Revivendo o tópico novamente, no livro 1 do Iezzi ele define (A - B) U (B - A) = A ∆ B. Eu cheguei à conclusão que (A -B) U (B - A) = (A U B) - (A Ո B). Queria saber se existe algum absurdo nisso que eu não tenha notado
futuromercante
futuromercante
Iniciante

Mensagens : 39
Data de inscrição : 04/06/2024
Idade : 18
Localização : Rio de Janeiro

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por Valéria Oliveira Qua 9 Out - 22:19

Olá! Não existe nenhum absurdo na sua conclusão. No diagrama de Venn fica bem claro como ela é verdadeira.
Valéria Oliveira
Valéria Oliveira
Iniciante

Mensagens : 34
Data de inscrição : 05/01/2022
Idade : 20
Localização : São José dos Campos, SP

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por futuromercante Qui 10 Out - 7:39

Obrigado!
futuromercante
futuromercante
Iniciante

Mensagens : 39
Data de inscrição : 04/06/2024
Idade : 18
Localização : Rio de Janeiro

Valéria Oliveira gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: ITA - Teoria dos Conjuntos

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos