Número Complexo
2 participantes
Página 1 de 1
Número Complexo
Considere o número complexo Z=√2+√2i. O menor número natural não nulo, n, tal que zn tem parte imaginária nula é igual a:
Maria Clara Borges- Iniciante
- Mensagens : 6
Data de inscrição : 05/04/2015
Idade : 26
Localização : Brasil
Re: Número Complexo
z = √2(1+i) = 2(1+i)/√2 = 2cis(45)
z^n = 2^n * cis(45n)
Queremos que:
2^n * sen(45n) = 0
sen(45°n) = 0
É fácil ver que para n = 4 temos sen(45°*4) = sen(180°) = 0.
n = 4.
z^n = 2^n * cis(45n)
Queremos que:
2^n * sen(45n) = 0
sen(45°n) = 0
É fácil ver que para n = 4 temos sen(45°*4) = sen(180°) = 0.
n = 4.
Ashitaka- Monitor
- Mensagens : 4365
Data de inscrição : 12/03/2013
Localização : São Paulo
Re: Número Complexo
No caso pra ser nulo então o ângulo tem que ser de 180°?! Foi o que eu entendi.
Maria Clara Borges- Iniciante
- Mensagens : 6
Data de inscrição : 05/04/2015
Idade : 26
Localização : Brasil
Re: Número Complexo
O número complexo é da forma z = |z|cis(a). Se elevar a n:
z^n = |z|^n * cis(na) = |z|^n * (cos(na) + isen(na)).
para a parte imaginária ser nula, sen(na) tem que ser 0. No caso do exercício:
n*45° = 180°*k
n*45º = 45º*(4k)
Como quer o menor inteiro:
4k = n, com k = 1 ---> n = 4.
Para Im(z) = 0 basta que na seja múltiplo de 180°.
z^n = |z|^n * cis(na) = |z|^n * (cos(na) + isen(na)).
para a parte imaginária ser nula, sen(na) tem que ser 0. No caso do exercício:
n*45° = 180°*k
n*45º = 45º*(4k)
Como quer o menor inteiro:
4k = n, com k = 1 ---> n = 4.
Para Im(z) = 0 basta que na seja múltiplo de 180°.
Ashitaka- Monitor
- Mensagens : 4365
Data de inscrição : 12/03/2013
Localização : São Paulo
Tópicos semelhantes
» um numero complexo nao nulo no plano complexo
» número complexo
» numero complexo
» Número Complexo
» Número Complexo
» número complexo
» numero complexo
» Número Complexo
» Número Complexo
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos