PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Inequação 2

3 participantes

Ir para baixo

Inequação 2 Empty Inequação 2

Mensagem por Blackmount Dom 22 Mar 2015, 17:18

Os números reais a, b, c e d são tais que a < b < c < d e a + d = b + c. Qual é maior: ad ou bc?

R: bc
Blackmount
Blackmount
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 185
Data de inscrição : 29/08/2013
Idade : 29
Localização : Rio de Janeiro, BR

Ir para o topo Ir para baixo

Inequação 2 Empty Re: Inequação 2

Mensagem por Elcioschin Dom 22 Mar 2015, 18:35

Faça a = 1, b = 2, c = 3, d = 4 e descubra
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73175
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Inequação 2 Empty Re: Inequação 2

Mensagem por Blackmount Dom 22 Mar 2015, 19:35

Sim, Elcio, mas a questão é discursiva

Se num problema parecido eu tivesse que demonstrar algebricamente, como eu faria pra provar que vale para qualquer real?
Blackmount
Blackmount
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 185
Data de inscrição : 29/08/2013
Idade : 29
Localização : Rio de Janeiro, BR

Ir para o topo Ir para baixo

Inequação 2 Empty Re: Inequação 2

Mensagem por Carlos Adir Dom 22 Mar 2015, 22:48

Eu já respondi esta questão. Contudo, não estou achando a resposta.
Mas podemos fazer na prova discursiva:


Então, calculando o valor de ad e bc:


O maior é bc

____________________________________________
← → ↛ ↔️ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇ 
♏️  ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir
Carlos Adir
Monitor
Monitor

Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil

Ir para o topo Ir para baixo

Inequação 2 Empty Re: Inequação 2

Mensagem por Blackmount Seg 23 Mar 2015, 03:42

Obrigado a todos  Smile
Blackmount
Blackmount
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 185
Data de inscrição : 29/08/2013
Idade : 29
Localização : Rio de Janeiro, BR

Ir para o topo Ir para baixo

Inequação 2 Empty Re: Inequação 2

Mensagem por Carlos Adir Qui 26 Mar 2015, 19:12

Consegui achar a resposta:
Desigualdades
Tem uma ótima solução por geometria do Mestre Medeiros.

____________________________________________
← → ↛ ↔️ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇ 
♏️  ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir
Carlos Adir
Monitor
Monitor

Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil

Ir para o topo Ir para baixo

Inequação 2 Empty Re: Inequação 2

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos