Progressão
3 participantes
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Progressão
Seja uma PG decrescente cujo primeiro termo excede em 2 o primeiro termo de uma PA e o terceiro termo excede em 3 o terceiro termo dessa mesma PA.Se em ambas as progressões o segundo termo vale 10, o valor da soma da razão da PA com a razão da PG é :
Resposta: -7,5
Resposta: -7,5
Lost619- Padawan
- Mensagens : 96
Data de inscrição : 04/12/2012
Idade : 34
Localização : Sorocaba - São Paulo
Re: Progressão
PA: (x, 10, y, ...) --> 10 - x = y - 10 --> y = 20 - x (I)
PG: (x + 2, 10, y + 3, ...) --> 10/(x + 2) = (y + 3)/10 --> (x + 2)(y + 3) = 100 (II)
De I em II:
(x + 2)(20 - x + 3) = 100 --> (x + 2)(23 - x) = 100 --> x² - 21x + 54 = 0 --> x = 18 ou x = 3
Para x = 18, tem-se y = 20 - 18 = 2. Para x = 3, tem-se y = 20 - 3 = 17.
Como a PG é decrescente, então x + 2 > y + 3 --> x > y + 1. Logo x = 18 e y = 2.
A razão da PA é r = 10 - x = 10 - 18 = -8. A razão da PG é q = 10/(x + 2) = 10/(18 + 2) = 10/20 = 0,5.
Logo, r + q = -8 + 0,5 = -7,5.
PG: (x + 2, 10, y + 3, ...) --> 10/(x + 2) = (y + 3)/10 --> (x + 2)(y + 3) = 100 (II)
De I em II:
(x + 2)(20 - x + 3) = 100 --> (x + 2)(23 - x) = 100 --> x² - 21x + 54 = 0 --> x = 18 ou x = 3
Para x = 18, tem-se y = 20 - 18 = 2. Para x = 3, tem-se y = 20 - 3 = 17.
Como a PG é decrescente, então x + 2 > y + 3 --> x > y + 1. Logo x = 18 e y = 2.
A razão da PA é r = 10 - x = 10 - 18 = -8. A razão da PG é q = 10/(x + 2) = 10/(18 + 2) = 10/20 = 0,5.
Logo, r + q = -8 + 0,5 = -7,5.
mauk03- Fera
- Mensagens : 831
Data de inscrição : 14/04/2012
Idade : 31
Localização : TB - Paraná - Br
Re: Progressão
Utilizaremos apenas PA e PG de 3 termos:
PG(x/q, x, x.q) e PA(x-r, x , x+r), em que x é o seundo termo de ambas as progressões, q é a razão da PG e r a razão da P.A. Queremos calcular q+r
Sabemos que:
x/q = x-r + 2
x.q = x+r + 3
Mas como x vale 10:
10/q = 10-r + 2 = 12-r
10.q = 10+r +3 = 13+r
Da equação 2, isolando r:
r = 10q - 13
Substituindo na equação 1:
10/q = 12 - (10q - 13)
10 = 12q - 10q^2 + 13q
10q^2 - 25q + 10 = 0
2q^2 - 5q + 2 = 0
Resolvendo a equação do segundo grau, encontramos como raizes q = 2 e q = 1/2. Mas como a PG é decrescente, q=1/2
Assim, r=-8 e r+q = -7,5
PG(x/q, x, x.q) e PA(x-r, x , x+r), em que x é o seundo termo de ambas as progressões, q é a razão da PG e r a razão da P.A. Queremos calcular q+r
Sabemos que:
x/q = x-r + 2
x.q = x+r + 3
Mas como x vale 10:
10/q = 10-r + 2 = 12-r
10.q = 10+r +3 = 13+r
Da equação 2, isolando r:
r = 10q - 13
Substituindo na equação 1:
10/q = 12 - (10q - 13)
10 = 12q - 10q^2 + 13q
10q^2 - 25q + 10 = 0
2q^2 - 5q + 2 = 0
Resolvendo a equação do segundo grau, encontramos como raizes q = 2 e q = 1/2. Mas como a PG é decrescente, q=1/2
Assim, r=-8 e r+q = -7,5
Giiovanna- Grupo
Velhos amigos do Fórum - Mensagens : 2128
Data de inscrição : 31/08/2012
Idade : 30
Localização : São Paulo, SP
Tópicos semelhantes
» Progressão Aritmética e Progressão Geométrica
» Progressão Aritmética + Progressão Geométrica
» Progressão geométrica e progressão aritmética
» Progressão aritmética - (escreva a progressão)
» Progressão
» Progressão Aritmética + Progressão Geométrica
» Progressão geométrica e progressão aritmética
» Progressão aritmética - (escreva a progressão)
» Progressão
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos