PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Inequação

2 participantes

Ir para baixo

Inequação Empty Inequação

Mensagem por Convidado Seg 30 Mar 2015, 09:23

Para que a equação (1 - a²)x² + 2ax - 1 = 0 tenha raízes pertencente ao intervalo ]0 ; 1[, é necessário e suficiente que a > 2. Prove.


Obrigada!

Convidado
Convidado


Ir para o topo Ir para baixo

Inequação Empty Re: Inequação

Mensagem por Carlos Adir Seg 30 Mar 2015, 13:50

Seja f(x) = (1-a²)x²+2ax-1, então temos que:
f(0) = (1-a²).0² + 2a . 0 - 1 ---> f(0)=-1
f(1) = (1-a²).1² + 2a . 1 - 1 ---> f(1) = -a²+2a-1+1 = 1-(a-1)²

Como é necessário que existam duas raizes entre 0 e 1, então é necessário que f(1)<0.
Portanto:


Mas veja que para tal fato ocorrer é necessário que o vértice da parábola seja maior que 0, então:


Ou seja, é necessário que satisfaça as três condições ao mesmo tempo:


E concluimos que isto vem quando:

____________________________________________
← → ↛ ↔️ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇ 
♏️  ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir
Carlos Adir
Monitor
Monitor

Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil

Ir para o topo Ir para baixo

Inequação Empty Re: Inequação

Mensagem por Convidado Seg 30 Mar 2015, 19:45

Muito obrigada! Excelente sua resolução!

Convidado
Convidado


Ir para o topo Ir para baixo

Inequação Empty Re: Inequação

Mensagem por Ashitaka Seg 30 Mar 2015, 20:03

Boa noite; trouxe 2 soluções alternativas, das quais acho que a segunda seja a melhor para esse problema.

Outra solução:
f(x) = (1 - a²)x² + 2ax - 1

(1-a²)*f(0) > 0 ---> 0 não está entre as raízes, portanto ou as duas são positivas ou as duas são negativas.

0 < a/(a²-1) < 1 ---> vértice da parábola entre 0 e 1; assim, a maior das raízes será obrigatoriamente positiva, mas como colocamos que o 0 não está entre as raízes, a outra também obrigatoriamente será.

(1-a²)*[(1-a²)1² + 2a - 1] > 0 ----> 1 não está entre as raízes; assim, ou ambas estão entre 0 e 1 ou ambas são maiores que 1; mas como já colocamos que o vértice está entre 0 e 1, isso força com que a maior raiz tambem esteja no intervalo

Jutando as condições:
a²-1 > 0
0 < a/(a²-1) < 1
a(a²-1)(a - 2) > 0
Resolvendo você encontra exatamente a > 2.

Outro modo:
Resolvendo a equação para x:
x = (-a +- 1)/(1-a²)
Queremos que:
0 < (a+1)/(a²-1) < 1
0 < (a-1)/(a²-1) < 1

0 < 1/(a-1) < 1
0 < 1/(a+1) < 1

Resolvendo o simples intervalo acima, temos que a > 2.
Ashitaka
Ashitaka
Monitor
Monitor

Mensagens : 4365
Data de inscrição : 12/03/2013
Localização : São Paulo

Ir para o topo Ir para baixo

Inequação Empty Re: Inequação

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos