Frações Algebricas
3 participantes
PiR2 :: Matemática :: Álgebra
Página 1 de 1
L.Lawliet- Mestre Jedi
- Mensagens : 797
Data de inscrição : 30/10/2013
Idade : 28
Localização : Brasil
L.Lawliet- Mestre Jedi
- Mensagens : 797
Data de inscrição : 30/10/2013
Idade : 28
Localização : Brasil
Re: Frações Algebricas
É isso mesmo, não dá para simplificar mais, (x-1) é o único fator comum, como ele pede o denominador seria mx² -9x + (m+7).
Luck- Grupo
Velhos amigos do Fórum - Mensagens : 5322
Data de inscrição : 20/09/2009
Idade : 32
Localização : RJ
Re: Frações Algebricas
É isso, mas a depender do valor de M, pode existir mais uma simplificação não?
L.Lawliet- Mestre Jedi
- Mensagens : 797
Data de inscrição : 30/10/2013
Idade : 28
Localização : Brasil
Re: Frações Algebricas
Partindo do fato, já dito, que (x-1) é fator:
f(x) = [(x-1)(mx²-7x+m+1)]/[(x-1)(mx²-9x+m+7)
f(x) = (mx²-7x+m+1)/(mx²-9x+m+7)
Sendo P(x) = mx²-7x+m+1 e Q(x) = mx²-9x+m+7, o outro fator comum, G(x), é dado pela diferença P(x) - Q(x) = G(x), onde G(x) deve ser linear.
P(x) - Q(x) = 2x - 6 = 2(x-3); então, G(x) = x-3
3 é raiz de P(x) e de Q(x).
P(3) = 0 e Q(3) = 0
.'. P(3) = 9m - 21 + m +1 = 0 .'. 10m -20 = 0 .'. m = 2
Substituindo em f(x), temos:
f(x) = (mx²-7x+m+1)/(mx²-9x+m+7)
f(x) = (2x²-7x+3)/(2x²-9x+9)
f(x) [(2x-1)(x-3)]/(2x-3)(x-3)]
f(x) = (2x-1)/(2x-3)
.'. O denominador da fração é 2x-3.
Espero ter ajudado.
MatheusMagnvs- Mestre Jedi
- Mensagens : 568
Data de inscrição : 12/11/2013
Idade : 28
Localização : Recife
Re: Frações Algebricas
Valeu matheus!
L.Lawliet- Mestre Jedi
- Mensagens : 797
Data de inscrição : 30/10/2013
Idade : 28
Localização : Brasil
Re: Frações Algebricas
Ta certo, já era o sono..luiz.bfg escreveu:É isso, mas a depender do valor de M, pode existir mais uma simplificação não?
Luck- Grupo
Velhos amigos do Fórum - Mensagens : 5322
Data de inscrição : 20/09/2009
Idade : 32
Localização : RJ
Tópicos semelhantes
» Frações Algébricas
» Frações Algébricas
» Frações Algébricas
» [CN - Frações Algébricas]
» Frações Algebricas II
» Frações Algébricas
» Frações Algébricas
» [CN - Frações Algébricas]
» Frações Algebricas II
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos