Função Logaritmica
2 participantes
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Função Logaritmica
Os pontos D e E pertencem ao gráfico da função y = logax; com a > 1. Suponha que B = (x;0), C = (x + 1; 0) e A = (x - 1; 0). Então o valor de x para o qual o trapézio BCDE é o triplo da área do ∆ABE é:
a) ( 1 + √5 )/ 2
b) 1 + √5/2
c) 1/2 + √5
d) 1 + √5
e) 1/2 - √5
a) ( 1 + √5 )/ 2
b) 1 + √5/2
c) 1/2 + √5
d) 1 + √5
e) 1/2 - √5
- Spoiler:
- Resp. a)
Nat'- Mestre Jedi
- Mensagens : 795
Data de inscrição : 13/06/2012
Idade : 30
Localização : São José dos Campos - SP , Brasil
Re: Função Logaritmica
AB = xB - xA ----> AB = x - (x - 1) ----> AB = 1
BC = xC - xB ----> BC = (x + 1) - 1----> BC = 1
BE = log(x) -----> CD = log(x + 1)
Área do triângulo ----> S = AB*BE/2 ----> S = 1*log(x)/2 -----> S = log(x)/2
Área do trapézio ----> S' = (CD + BE)*BC/2 -----> S' = [log(x+1) + log(x)]*1/2 ----> S' = log[x*(x + 1)]/2
S' = 3*S -----> log[x*(x+1)]*1/2 = 3*log(x)/2 -----> log[x*(x+1)] = log(x³) ----> x*(x + 1) = x³ ----> x + 1 = x² ----> x² - x - 1 = 0
Raiz positiva ----> x = (1 + \/5)/2
BC = xC - xB ----> BC = (x + 1) - 1----> BC = 1
BE = log(x) -----> CD = log(x + 1)
Área do triângulo ----> S = AB*BE/2 ----> S = 1*log(x)/2 -----> S = log(x)/2
Área do trapézio ----> S' = (CD + BE)*BC/2 -----> S' = [log(x+1) + log(x)]*1/2 ----> S' = log[x*(x + 1)]/2
S' = 3*S -----> log[x*(x+1)]*1/2 = 3*log(x)/2 -----> log[x*(x+1)] = log(x³) ----> x*(x + 1) = x³ ----> x + 1 = x² ----> x² - x - 1 = 0
Raiz positiva ----> x = (1 + \/5)/2
Elcioschin- Grande Mestre
- Mensagens : 73175
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP
Re: Função Logaritmica
Estava errando por falta de atenção...
Nessa parte estava fazendo x² - x + 1 = 0 ... :drunken:
Obrigada pela ajuda!
Elcioschin escreveu: x + 1 = x² ----> x² - x - 1 = 0
Nessa parte estava fazendo x² - x + 1 = 0 ... :drunken:
Obrigada pela ajuda!
Nat'- Mestre Jedi
- Mensagens : 795
Data de inscrição : 13/06/2012
Idade : 30
Localização : São José dos Campos - SP , Brasil
Tópicos semelhantes
» Função logaritmica e função exponencial (teórica).
» Função Logarítmica
» Função Logarítmica
» função logarítmica
» Função logaritmica
» Função Logarítmica
» Função Logarítmica
» função logarítmica
» Função logaritmica
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos