PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Geometria Analítica

2 participantes

Ir para baixo

Geometria Analítica Empty Geometria Analítica

Mensagem por ricardo2012 Qui 03 maio 2012, 18:37

Em um sistema de coordenadas polares, P = (3,∏/6) e Q = (12,0) são dois vértices adjacentes de um quadrado. O valor numérico da área desse quadrado é:

R: 153-36√3
ricardo2012
ricardo2012
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 171
Data de inscrição : 01/05/2012
Idade : 30
Localização : Rio de Janeiro

Ir para o topo Ir para baixo

Geometria Analítica Empty Re: Geometria Analítica

Mensagem por Jose Carlos Sex 04 maio 2012, 12:32

temos:

P( 3, pi/6 ) e Q( 12, 0 ) -> coordenadas polares.

então, passando para coordenadas retangulares:

xP = 3*cos (pi/6) -> xP = 3*(\/3/2)
.......................................................P( 3*(\/3)/2 , 3/2 )
yP = 3*sen (pi/6) -> yP = 3*(1/2)


xQ = 12*cos 0° -> xQ = 12
..................................................Q( 12, 0 )
yQ = 12*sen 0° -> yQ = 0


- distância entre A e B:

d²(A,B) = [ 3*(\/3/2) - 12 ]² + [ ( 3/2 ) - 0 ]² = [( 3*\/3 )² - 24 )/2 ]² + [ 9/4 ] =

= [ 27 - 144*\/3 + 576 + 9 ]/4 = [ 612 - 144*\/3 ]/4 = 153 - 36*\/3 -> área do quadrado

____________________________________________
...se acupuntura adiantasse, porco-espinho viveria para sempre....
Jose Carlos
Jose Carlos
Grande Mestre
Grande Mestre

Mensagens : 5551
Data de inscrição : 08/07/2009
Idade : 74
Localização : Niterói - RJ

Ir para o topo Ir para baixo

Geometria Analítica Empty Re: Geometria Analítica

Mensagem por ricardo2012 Sex 04 maio 2012, 19:27

valeu ajudou mto !
ricardo2012
ricardo2012
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 171
Data de inscrição : 01/05/2012
Idade : 30
Localização : Rio de Janeiro

Ir para o topo Ir para baixo

Geometria Analítica Empty Re: Geometria Analítica

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos