PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Equação biquadrada

2 participantes

Ir para baixo

Resolvido Equação biquadrada

Mensagem por matsudav1 Qua 22 Fev 2023, 21:55

Boa noite!
Alguém poderia me ajudar referente a seguinte conta?:


1/x^4 = 6/(x^2) -8 (x≠0)

Equação biquadrada D6HjUW2V35L0AAAAAElFTkSuQmCC

Quando encontro os valores de a=-8 b=6 c=-1. A resposta que encontro é: V={-1/2, 1/2, -1/√2, 1/√2}.
Caso minha resposta esteja incorreta, por favor, me explique passo a passo como encontrar o conjunto verdade.

Grato!


Última edição por matsudav1 em Sáb 25 Fev 2023, 17:24, editado 1 vez(es)

matsudav1
Iniciante

Mensagens : 21
Data de inscrição : 12/11/2020

Ir para o topo Ir para baixo

Resolvido Re: Equação biquadrada

Mensagem por al171 Qua 22 Fev 2023, 22:06

Observe que
\[
\frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}} = \frac{1}{ \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{ \sqrt{2} }{ \sqrt{4}} = \frac{\sqrt{2}}{2}.
\]
Portanto, o conjunto solução encontrado está correto, apenas escrito de uma maneira diferente do gabarito.
\[
\frac{1}{x^4} = \frac{6}{x^2} - 8 \Leftrightarrow \frac{1}{x^4} - \frac{6}{x^2} + 8 = 0 \Leftrightarrow \frac{8x^4 - 6x^2 + 1 }{ x^4} = 0
\]
Resolvendo a equação biquadrada em \( x^2\):
\[
\begin{align*}
x^2 & = \frac{ 3 \pm \sqrt{ 9 - 8 }}{8} \\
& = \frac{3 \pm 1 }{8} \\
\end{align*}
\]
Assim, devemos avaliar quatro cenários:
\[
x^2 = \frac{3 + 1 }{8} \quad \text{ou} \quad x^2 = \frac{3 -1}{8} \Leftrightarrow x = \pm \sqrt{ \frac{1}{2} } \quad \text{ou} \quad x = \pm \frac{1}{2}
\]
Assim,
\[
S = \left\{ \pm \frac{1}{2}, \pm \frac{1}{\sqrt{2} } \right\}
\]
al171
al171
Fera
Fera

Mensagens : 490
Data de inscrição : 14/03/2017
Idade : 23
Localização : SP

matsudav1 gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Equação biquadrada

Mensagem por matsudav1 Sáb 25 Fev 2023, 17:22

Ah! Agora consegui entender! cheers
Muito obrigado pela ajuda, @al171
Abraços! Equação biquadrada 503132

matsudav1
Iniciante

Mensagens : 21
Data de inscrição : 12/11/2020

Ir para o topo Ir para baixo

Resolvido Re: Equação biquadrada

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos