PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Máx. e Mín. de expressão trigonométrica.

3 participantes

Ir para baixo

Resolvido Máx. e Mín. de expressão trigonométrica.

Mensagem por Betoneira de Natal Dom 13 Mar 2022, 14:02

Encontre o valor máximo e mínimo da seguinte expressão: Máx. e Mín. de expressão trigonométrica. Svg+xml;base64,PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPCEtLSBHZW5lcmF0ZWQgYnkgQ29kZUNvZ3Mgd2l0aCBkdmlzdmdtIDIuMTEuMSAtLT4KPHN2ZyB2ZXJzaW9uPScxLjEnIHhtbG5zPSdodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZycgeG1sbnM6eGxpbms9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkveGxpbmsnIHdpZHRoPSc4OS4xMzQ5MzhwdCcgaGVpZ2h0PScxMC4wMjM5M3B0JyB2aWV3Qm94PSctLjIzOTA1MSAtLjI0NDk0MSA4OS4xMzQ5MzggMTAuMDIzOTMnPgo8ZGVmcz4KPHBhdGggaWQ9J2cwLTk5JyBkPSdNNC42NzQ0NzEtNC40OTUxNDNDNC40NDczMjMtNC40OTUxNDMgNC4zMzk3MjYtNC40OTUxNDMgNC4xNzIzNTQtNC4zNTE2ODFDNC4xMDA2MjMtNC4yOTE5MDUgMy45NjkxMTYtNC4xMTI1NzggMy45NjkxMTYtMy45MjEyOTVDMy45NjkxMTYtMy42ODIxOTIgNC4xNDg0NDMtMy41Mzg3MyA0LjM3NTU5Mi0zLjUzODczQzQuNjYyNTE2LTMuNTM4NzMgNC45ODUzMDUtMy43Nzc4MzMgNC45ODUzMDUtNC4yNTYwNEM0Ljk4NTMwNS00LjgyOTg4OCA0LjQzNTM2Ny01LjI3MjIyOSAzLjYxMDQ2MS01LjI3MjIyOUMyLjA0NDMzNC01LjI3MjIyOSAuNDc4MjA3LTMuNTYyNjQgLjQ3ODIwNy0xLjg2NTAwNkMuNDc4MjA3LS44MjQ5MDcgMS4xMjM3ODYgLjExOTU1MiAyLjM0MzIxMyAuMTE5NTUyQzMuOTY5MTE2IC4xMTk1NTIgNC45OTcyNi0xLjE0NzY5NiA0Ljk5NzI2LTEuMzAzMTEzQzQuOTk3MjYtMS4zNzQ4NDQgNC45MjU1MjktMS40MzQ2MiA0Ljg3NzcwOS0xLjQzNDYyQzQuODQxODQzLTEuNDM0NjIgNC44Mjk4ODgtMS40MjI2NjUgNC43MjIyOTEtMS4zMTUwNjhDMy45NTcxNjEtLjI5ODg3OSAyLjgyMTQyLS4xMTk1NTIgMi4zNjcxMjMtLjExOTU1MkMxLjU0MjIxNy0uMTE5NTUyIDEuMjc5MjAzLS44MzY4NjIgMS4yNzkyMDMtMS40MzQ2MkMxLjI3OTIwMy0xLjg1MzA1MSAxLjQ4MjQ0MS0zLjAxMjcwMiAxLjkxMjgyNy0zLjgyNTY1NEMyLjIyMzY2MS00LjM4NzU0NyAyLjg2OTI0LTUuMDMzMTI2IDMuNjIyNDE2LTUuMDMzMTI2QzMuNzc3ODMzLTUuMDMzMTI2IDQuNDM1MzY3LTUuMDA5MjE1IDQuNjc0NDcxLTQuNDk1MTQzWicvPgo8cGF0aCBpZD0nZzAtMTAxJyBkPSdNMi4xMzk5NzUtMi43NzM1OTlDMi40NjI3NjUtMi43NzM1OTkgMy4yNzU3MTYtMi43OTc1MDkgMy44NDk1NjQtMy4wMTI3MDJDNC43NTgxNTctMy4zNTk0MDIgNC44NDE4NDMtNC4wNTI4MDIgNC44NDE4NDMtNC4yNjc5OTVDNC44NDE4NDMtNC43OTQwMjIgNC4zODc1NDctNS4yNzIyMjkgMy41OTg1MDYtNS4yNzIyMjlDMi4zNDMyMTMtNS4yNzIyMjkgLjUzNzk4My00LjEzNjQ4OCAuNTM3OTgzLTIuMDA4NDY4Qy41Mzc5ODMtLjc1MzE3NiAxLjI1NTI5MyAuMTE5NTUyIDIuMzQzMjEzIC4xMTk1NTJDMy45NjkxMTYgLjExOTU1MiA0Ljk5NzI2LTEuMTQ3Njk2IDQuOTk3MjYtMS4zMDMxMTNDNC45OTcyNi0xLjM3NDg0NCA0LjkyNTUyOS0xLjQzNDYyIDQuODc3NzA5LTEuNDM0NjJDNC44NDE4NDMtMS40MzQ2MiA0LjgyOTg4OC0xLjQyMjY2NSA0LjcyMjI5MS0xLjMxNTA2OEMzLjk1NzE2MS0uMjk4ODc5IDIuODIxNDItLjExOTU1MiAyLjM2NzEyMy0uMTE5NTUyQzEuNjg1Njc5LS4xMTk1NTIgMS4zMjcwMjQtLjY1NzUzNCAxLjMyNzAyNC0xLjU0MjIxN0MxLjMyNzAyNC0xLjcwOTU4OSAxLjMyNzAyNC0yLjAwODQ2OCAxLjUwNjM1MS0yLjc3MzU5OUgyLjEzOTk3NVpNMS41NjYxMjctMy4wMTI3MDJDMi4wODAxOTktNC44NTM3OTggMy4yMTU5NC01LjAzMzEyNiAzLjU5ODUwNi01LjAzMzEyNkM0LjEyNDUzMy01LjAzMzEyNiA0LjQ4MzE4OC00LjcyMjI5MSA0LjQ4MzE4OC00LjI2Nzk5NUM0LjQ4MzE4OC0zLjAxMjcwMiAyLjU3MDM2MS0zLjAxMjcwMiAyLjA2ODI0NC0zLjAxMjcwMkgxLjU2NjEyN1onLz4KPHBhdGggaWQ9J2cwLTExMCcgZD0nTTIuNDYyNzY1LTMuNTAyODY0QzIuNDg2Njc1LTMuNTc0NTk1IDIuNzg1NTU0LTQuMTcyMzU0IDMuMjI3ODk1LTQuNTU0OTE5QzMuNTM4NzMtNC44NDE4NDMgMy45NDUyMDUtNS4wMzMxMjYgNC40MTE0NTctNS4wMzMxMjZDNC44ODk2NjQtNS4wMzMxMjYgNS4wNTcwMzYtNC42NzQ0NzEgNS4wNTcwMzYtNC4xOTYyNjRDNS4wNTcwMzYtMy41MTQ4MTkgNC41NjY4NzQtMi4xNTE5MyA0LjMyNzc3MS0xLjUwNjM1MUM0LjIyMDE3NC0xLjIxOTQyNyA0LjE2MDM5OS0xLjA2NDAxIDQuMTYwMzk5LS44NDg4MTdDNC4xNjAzOTktLjMxMDgzNCA0LjUzMTAwOSAuMTE5NTUyIDUuMTA0ODU3IC4xMTk1NTJDNi4yMTY2ODcgLjExOTU1MiA2LjYzNTExOC0xLjYzNzg1OCA2LjYzNTExOC0xLjcwOTU4OUM2LjYzNTExOC0xLjc2OTM2NSA2LjU4NzI5OC0xLjgxNzE4NiA2LjUxNTU2Ny0xLjgxNzE4NkM2LjQwNzk3LTEuODE3MTg2IDYuMzk2MDE1LTEuNzgxMzIgNi4zMzYyMzktMS41NzgwODJDNi4wNjEyNy0uNTk3NzU4IDUuNjA2OTc0LS4xMTk1NTIgNS4xNDA3MjItLjExOTU1MkM1LjAyMTE3MS0uMTE5NTUyIDQuODI5ODg4LS4xMzE1MDcgNC44Mjk4ODgtLjUxNDA3MkM0LjgyOTg4OC0uODEyOTUxIDQuOTYxMzk1LTEuMTcxNjA2IDUuMDMzMTI2LTEuMzM4OTc5QzUuMjcyMjI5LTEuOTk2NTEzIDUuNzc0MzQ2LTMuMzM1NDkyIDUuNzc0MzQ2LTQuMDE2OTM2QzUuNzc0MzQ2LTQuNzM0MjQ3IDUuMzU1OTE1LTUuMjcyMjI5IDQuNDQ3MzIzLTUuMjcyMjI5QzMuMzgzMzEzLTUuMjcyMjI5IDIuODIxNDItNC41MTkwNTQgMi42MDYyMjctNC4yMjAxNzRDMi41NzAzNjEtNC45MDE2MTkgMi4wODAxOTktNS4yNzIyMjkgMS41NTQxNzItNS4yNzIyMjlDMS4xNzE2MDYtNS4yNzIyMjkgLjkwODU5My01LjA0NTA4MSAuNzA1MzU1LTQuNjM4NjA1Qy40OTAxNjItNC4yMDgyMTkgLjMyMjc5LTMuNDkwOTA5IC4zMjI3OS0zLjQ0MzA4OFMuMzcwNjEtMy4zMzU0OTIgLjQ1NDI5Ni0zLjMzNTQ5MkMuNTQ5OTM4LTMuMzM1NDkyIC41NjE4OTMtMy4zNDc0NDcgLjYzMzYyNC0zLjYyMjQxNkMuODI0OTA3LTQuMzUxNjgxIDEuMDQwMS01LjAzMzEyNiAxLjUxODMwNi01LjAzMzEyNkMxLjc5MzI3NS01LjAzMzEyNiAxLjg4ODkxNy00Ljg0MTg0MyAxLjg4ODkxNy00LjQ4MzE4OEMxLjg4ODkxNy00LjIyMDE3NCAxLjc2OTM2NS0zLjc1MzkyMyAxLjY4NTY3OS0zLjM4MzMxM0wxLjM1MDkzNC0yLjA5MjE1NEMxLjMwMzExMy0xLjg2NTAwNiAxLjE3MTYwNi0xLjMyNzAyNCAxLjExMTgzMS0xLjExMTgzMUMxLjAyODE0NC0uODAwOTk2IC44OTY2MzgtLjIzOTEwMyAuODk2NjM4LS4xNzkzMjhDLjg5NjYzOC0uMDExOTU1IDEuMDI4MTQ0IC4xMTk1NTIgMS4yMDc0NzIgLjExOTU1MkMxLjM1MDkzNCAuMTE5NTUyIDEuNTE4MzA2IC4wNDc4MjEgMS42MTM5NDgtLjEzMTUwN0MxLjYzNzg1OC0uMTkxMjgzIDEuNzQ1NDU1LS42MDk3MTQgMS44MDUyMy0uODQ4ODE3TDIuMDY4MjQ0LTEuOTI0NzgyTDIuNDYyNzY1LTMuNTAyODY0WicvPgo8cGF0aCBpZD0nZzAtMTExJyBkPSdNNS40NTE1NTctMy4yODc2NzFDNS40NTE1NTctNC40MjM0MTIgNC43MTAzMzYtNS4yNzIyMjkgMy42MjI0MTYtNS4yNzIyMjlDMi4wNDQzMzQtNS4yNzIyMjkgLjQ5MDE2Mi0zLjU1MDY4NSAuNDkwMTYyLTEuODY1MDA2Qy40OTAxNjItLjcyOTI2NSAxLjIzMTM4MiAuMTE5NTUyIDIuMzE5MzAzIC4xMTk1NTJDMy45MDkzNCAuMTE5NTUyIDUuNDUxNTU3LTEuNjAxOTkzIDUuNDUxNTU3LTMuMjg3NjcxWk0yLjMzMTI1OC0uMTE5NTUyQzEuNzMzNDk5LS4xMTk1NTIgMS4yOTExNTgtLjU5Nzc1OCAxLjI5MTE1OC0xLjQzNDYyQzEuMjkxMTU4LTEuOTg0NTU4IDEuNTc4MDgyLTMuMjAzOTg1IDEuOTEyODI3LTMuODAxNzQzQzIuNDUwODA5LTQuNzIyMjkxIDMuMTIwMjk5LTUuMDMzMTI2IDMuNjEwNDYxLTUuMDMzMTI2QzQuMTk2MjY0LTUuMDMzMTI2IDQuNjUwNTYtNC41NTQ5MTkgNC42NTA1Ni0zLjcxODA1N0M0LjY1MDU2LTMuMjM5ODUxIDQuMzk5NTAyLTEuOTYwNjQ4IDMuOTQ1MjA1LTEuMjMxMzgyQzMuNDU1MDQ0LS40MzAzODYgMi43OTc1MDktLjExOTU1MiAyLjMzMTI1OC0uMTE5NTUyWicvPgo8cGF0aCBpZD0nZzAtMTE1JyBkPSdNMi43MjU3NzgtMi4zOTEwMzRDMi45MjkwMTYtMi4zNTUxNjggMy4yNTE4MDYtMi4yODM0MzcgMy4zMjM1MzctMi4yNzE0ODJDMy40Nzg5NTQtMi4yMjM2NjEgNC4wMTY5MzYtMi4wMzIzNzkgNC4wMTY5MzYtMS40NTg1MzFDNC4wMTY5MzYtMS4wODc5MiAzLjY4MjE5Mi0uMTE5NTUyIDIuMjk1MzkyLS4xMTk1NTJDMi4wNDQzMzQtLjExOTU1MiAxLjE0NzY5Ni0uMTU1NDE3IC45MDg1OTMtLjgxMjk1MUMxLjM4NjgtLjc1MzE3NiAxLjYyNTkwMy0xLjEyMzc4NiAxLjYyNTkwMy0xLjM4NjhDMS42MjU5MDMtMS42Mzc4NTggMS40NTg1MzEtMS43NjkzNjUgMS4yMTk0MjctMS43NjkzNjVDLjk1NjQxMy0xLjc2OTM2NSAuNjA5NzE0LTEuNTY2MTI3IC42MDk3MTQtMS4wMjgxNDRDLjYwOTcxNC0uMzIyNzkgMS4zMjcwMjQgLjExOTU1MiAyLjI4MzQzNyAuMTE5NTUyQzQuMTAwNjIzIC4xMTk1NTIgNC42Mzg2MDUtMS4yMTk0MjcgNC42Mzg2MDUtMS44NDEwOTZDNC42Mzg2MDUtMi4wMjA0MjMgNC42Mzg2MDUtMi4zNTUxNjggNC4yNTYwNC0yLjczNzczM0MzLjk1NzE2MS0zLjAyNDY1OCAzLjY3MDIzNy0zLjA4NDQzMyAzLjAyNDY1OC0zLjIxNTk0QzIuNzAxODY4LTMuMjg3NjcxIDIuMTg3Nzk2LTMuMzk1MjY4IDIuMTg3Nzk2LTMuOTMzMjVDMi4xODc3OTYtNC4xNzIzNTQgMi40MDI5ODktNS4wMzMxMjYgMy41Mzg3My01LjAzMzEyNkM0LjA0MDg0Ny01LjAzMzEyNiA0LjUzMTAwOS00Ljg0MTg0MyA0LjY1MDU2LTQuNDExNDU3QzQuMTI0NTMzLTQuNDExNDU3IDQuMTAwNjIzLTMuOTU3MTYxIDQuMTAwNjIzLTMuOTQ1MjA1QzQuMTAwNjIzLTMuNjk0MTQ3IDQuMzI3NzcxLTMuNjIyNDE2IDQuNDM1MzY3LTMuNjIyNDE2QzQuNjAyNzQtMy42MjI0MTYgNC45Mzc0ODQtMy43NTM5MjMgNC45Mzc0ODQtNC4yNTYwNFM0LjQ4MzE4OC01LjI3MjIyOSAzLjU1MDY4NS01LjI3MjIyOUMxLjk4NDU1OC01LjI3MjIyOSAxLjU2NjEyNy00LjA0MDg0NyAxLjU2NjEyNy0zLjU1MDY4NUMxLjU2NjEyNy0yLjY0MjA5MiAyLjQ1MDgwOS0yLjQ1MDgwOSAyLjcyNTc3OC0yLjM5MTAzNFonLz4KPHBhdGggaWQ9J2cwLTEyMCcgZD0nTTUuNjY2NzUtNC44Nzc3MDlDNS4yODQxODQtNC44MDU5NzggNS4xNDA3MjItNC41MTkwNTQgNS4xNDA3MjItNC4yOTE5MDVDNS4xNDA3MjItNC4wMDQ5ODEgNS4zNjc4Ny0zLjkwOTM0IDUuNTM1MjQzLTMuOTA5MzRDNS44OTM4OTgtMy45MDkzNCA2LjE0NDk1Ni00LjIyMDE3NCA2LjE0NDk1Ni00LjU0Mjk2NEM2LjE0NDk1Ni01LjA0NTA4MSA1LjU3MTEwOC01LjI3MjIyOSA1LjA2ODk5MS01LjI3MjIyOUM0LjMzOTcyNi01LjI3MjIyOSAzLjkzMzI1LTQuNTU0OTE5IDMuODI1NjU0LTQuMzI3NzcxQzMuNTUwNjg1LTUuMjI0NDA4IDIuODA5NDY1LTUuMjcyMjI5IDIuNTk0MjcxLTUuMjcyMjI5QzEuMzc0ODQ0LTUuMjcyMjI5IC43MjkyNjUtMy43MDYxMDIgLjcyOTI2NS0zLjQ0MzA4OEMuNzI5MjY1LTMuMzk1MjY4IC43NzcwODYtMy4zMzU0OTIgLjg2MDc3Mi0zLjMzNTQ5MkMuOTU2NDEzLTMuMzM1NDkyIC45ODAzMjQtMy40MDcyMjMgMS4wMDQyMzQtMy40NTUwNDRDMS40MTA3MS00Ljc4MjA2NyAyLjIxMTcwNi01LjAzMzEyNiAyLjU1ODQwNi01LjAzMzEyNkMzLjA5NjM4OS01LjAzMzEyNiAzLjIwMzk4NS00LjUzMTAwOSAzLjIwMzk4NS00LjI0NDA4NUMzLjIwMzk4NS0zLjk4MTA3MSAzLjEzMjI1NC0zLjcwNjEwMiAyLjk4ODc5Mi0zLjEzMjI1NEwyLjU4MjMxNi0xLjQ5NDM5NkMyLjQwMjk4OS0uNzc3MDg2IDIuMDU2Mjg5LS4xMTk1NTIgMS40MjI2NjUtLjExOTU1MkMxLjM2Mjg4OS0uMTE5NTUyIDEuMDY0MDEtLjExOTU1MiAuODEyOTUxLS4yNzQ5NjlDMS4yNDMzMzctLjM1ODY1NSAxLjMzODk3OS0uNzE3MzEgMS4zMzg5NzktLjg2MDc3MkMxLjMzODk3OS0xLjA5OTg3NSAxLjE1OTY1MS0xLjI0MzMzNyAuOTMyNTAzLTEuMjQzMzM3Qy42NDU1NzktMS4yNDMzMzcgLjMzNDc0NS0uOTkyMjc5IC4zMzQ3NDUtLjYwOTcxNEMuMzM0NzQ1LS4xMDc1OTcgLjg5NjYzOCAuMTE5NTUyIDEuNDEwNzEgLjExOTU1MkMxLjk4NDU1OCAuMTE5NTUyIDIuMzkxMDM0LS4zMzQ3NDUgMi42NDIwOTItLjgyNDkwN0MyLjgzMzM3NS0uMTE5NTUyIDMuNDMxMTMzIC4xMTk1NTIgMy44NzM0NzQgLjExOTU1MkM1LjA5MjkwMiAuMTE5NTUyIDUuNzM4NDgxLTEuNDQ2NTc1IDUuNzM4NDgxLTEuNzA5NTg5QzUuNzM4NDgxLTEuNzY5MzY1IDUuNjkwNjYtMS44MTcxODYgNS42MTg5MjktMS44MTcxODZDNS41MTEzMzMtMS44MTcxODYgNS40OTkzNzctMS43NTc0MSA1LjQ2MzUxMi0xLjY2MTc2OEM1LjE0MDcyMi0uNjA5NzE0IDQuNDQ3MzIzLS4xMTk1NTIgMy45MDkzNC0uMTE5NTUyQzMuNDkwOTA5LS4xMTk1NTIgMy4yNjM3NjEtLjQzMDM4NiAzLjI2Mzc2MS0uOTIwNTQ4QzMuMjYzNzYxLTEuMTgzNTYyIDMuMzExNTgyLTEuMzc0ODQ0IDMuNTAyODY0LTIuMTYzODg1TDMuOTIxMjk1LTMuNzg5Nzg4QzQuMTAwNjIzLTQuNTA3MDk4IDQuNTA3MDk4LTUuMDMzMTI2IDUuMDU3MDM2LTUuMDMzMTI2QzUuMDgwOTQ2LTUuMDMzMTI2IDUuNDE1NjkxLTUuMDMzMTI2IDUuNjY2NzUtNC44Nzc3MDlaJy8+CjxwYXRoIGlkPSdnMS00MycgZD0nTTQuNzcwMTEyLTIuNzYxNjQ0SDguMDY5NzM4QzguMjM3MTExLTIuNzYxNjQ0IDguNDUyMzA0LTIuNzYxNjQ0IDguNDUyMzA0LTIuOTc2ODM3QzguNDUyMzA0LTMuMjAzOTg1IDguMjQ5MDY2LTMuMjAzOTg1IDguMDY5NzM4LTMuMjAzOTg1SDQuNzcwMTEyVi02LjUwMzYxMUM0Ljc3MDExMi02LjY3MDk4NCA0Ljc3MDExMi02Ljg4NjE3NyA0LjU1NDkxOS02Ljg4NjE3N0M0LjMyNzc3MS02Ljg4NjE3NyA0LjMyNzc3MS02LjY4MjkzOSA0LjMyNzc3MS02LjUwMzYxMVYtMy4yMDM5ODVIMS4wMjgxNDRDLjg2MDc3Mi0zLjIwMzk4NSAuNjQ1NTc5LTMuMjAzOTg1IC42NDU1NzktMi45ODg3OTJDLjY0NTU3OS0yLjc2MTY0NCAuODQ4ODE3LTIuNzYxNjQ0IDEuMDI4MTQ0LTIuNzYxNjQ0SDQuMzI3NzcxVi41Mzc5ODNDNC4zMjc3NzEgLjcwNTM1NSA0LjMyNzc3MSAuOTIwNTQ4IDQuNTQyOTY0IC45MjA1NDhDNC43NzAxMTIgLjkyMDU0OCA0Ljc3MDExMiAuNzE3MzEgNC43NzAxMTIgLjUzNzk4M1YtMi43NjE2NDRaJy8+CjxwYXRoIGlkPSdnMS00OScgZD0nTTMuNDQzMDg4LTcuNjYzMjYzQzMuNDQzMDg4LTcuOTM4MjMyIDMuNDQzMDg4LTcuOTUwMTg3IDMuMjAzOTg1LTcuOTUwMTg3QzIuOTE3MDYxLTcuNjI3Mzk3IDIuMzE5MzAzLTcuMTg1MDU2IDEuMDg3OTItNy4xODUwNTZWLTYuODM4MzU2QzEuMzYyODg5LTYuODM4MzU2IDEuOTYwNjQ4LTYuODM4MzU2IDIuNjE4MTgyLTcuMTQ5MTkxVi0uOTIwNTQ4QzIuNjE4MTgyLS40OTAxNjIgMi41ODIzMTYtLjM0NjcgMS41MzAyNjItLjM0NjdIMS4xNTk2NTFWMEMxLjQ4MjQ0MS0uMDIzOTEgMi42NDIwOTItLjAyMzkxIDMuMDM2NjEzLS4wMjM5MVM0LjU3ODgyOS0uMDIzOTEgNC45MDE2MTkgMFYtLjM0NjdINC41MzEwMDlDMy40Nzg5NTQtLjM0NjcgMy40NDMwODgtLjQ5MDE2MiAzLjQ0MzA4OC0uOTIwNTQ4Vi03LjY2MzI2M1onLz4KPHBhdGggaWQ9J2cxLTUwJyBkPSdNNS4yNjAyNzQtMi4wMDg0NjhINC45OTcyNkM0Ljk2MTM5NS0xLjgwNTIzIDQuODY1NzUzLTEuMTQ3Njk2IDQuNzQ2MjAyLS45NTY0MTNDNC42NjI1MTYtLjg0ODgxNyAzLjk4MTA3MS0uODQ4ODE3IDMuNjIyNDE2LS44NDg4MTdIMS40MTA3MUMxLjczMzQ5OS0xLjEyMzc4NiAyLjQ2Mjc2NS0xLjg4ODkxNyAyLjc3MzU5OS0yLjE3NTg0MUM0LjU5MDc4NS0zLjg0OTU2NCA1LjI2MDI3NC00LjQ3MTIzMyA1LjI2MDI3NC01LjY1NDc5NUM1LjI2MDI3NC03LjAyOTYzOSA0LjE3MjM1NC03Ljk1MDE4NyAyLjc4NTU1NC03Ljk1MDE4N1MuNTg1ODAzLTYuNzY2NjI1IC41ODU4MDMtNS43Mzg0ODFDLjU4NTgwMy01LjEyODc2NyAxLjExMTgzMS01LjEyODc2NyAxLjE0NzY5Ni01LjEyODc2N0MxLjM5ODc1NS01LjEyODc2NyAxLjcwOTU4OS01LjMwODA5NSAxLjcwOTU4OS01LjY5MDY2QzEuNzA5NTg5LTYuMDI1NDA1IDEuNDgyNDQxLTYuMjUyNTUzIDEuMTQ3Njk2LTYuMjUyNTUzQzEuMDQwMS02LjI1MjU1MyAxLjAxNjE4OS02LjI1MjU1MyAuOTgwMzI0LTYuMjQwNTk4QzEuMjA3NDcyLTcuMDUzNTQ5IDEuODUzMDUxLTcuNjAzNDg3IDIuNjMwMTM3LTcuNjAzNDg3QzMuNjQ2MzI2LTcuNjAzNDg3IDQuMjY3OTk1LTYuNzU0NjcgNC4yNjc5OTUtNS42NTQ3OTVDNC4yNjc5OTUtNC42Mzg2MDUgMy42ODIxOTItMy43NTM5MjMgMy4wMDA3NDctMi45ODg3OTJMLjU4NTgwMy0uMjg2OTI0VjBINC45NDk0NEw1LjI2MDI3NC0yLjAwODQ2OFonLz4KPHBhdGggaWQ9J2cxLTUzJyBkPSdNMS41MzAyNjItNi44NTAzMTFDMi4wNDQzMzQtNi42ODI5MzkgMi40NjI3NjUtNi42NzA5ODQgMi41OTQyNzEtNi42NzA5ODRDMy45NDUyMDUtNi42NzA5ODQgNC44MDU5NzgtNy42NjMyNjMgNC44MDU5NzgtNy44MzA2MzVDNC44MDU5NzgtNy44Nzg0NTYgNC43ODIwNjctNy45MzgyMzIgNC43MTAzMzYtNy45MzgyMzJDNC42ODY0MjYtNy45MzgyMzIgNC42NjI1MTYtNy45MzgyMzIgNC41NTQ5MTktNy44OTA0MTFDMy44ODU0My03LjYwMzQ4NyAzLjMxMTU4Mi03LjU2NzYyMSAzLjAwMDc0Ny03LjU2NzYyMUMyLjIxMTcwNi03LjU2NzYyMSAxLjY0OTgxMy03LjgwNjcyNSAxLjQyMjY2NS03LjkwMjM2NkMxLjMzODk3OS03LjkzODIzMiAxLjMxNTA2OC03LjkzODIzMiAxLjMwMzExMy03LjkzODIzMkMxLjIwNzQ3Mi03LjkzODIzMiAxLjIwNzQ3Mi03Ljg2NjUwMSAxLjIwNzQ3Mi03LjY3NTIxOFYtNC4xMjQ1MzNDMS4yMDc0NzItMy45MDkzNCAxLjIwNzQ3Mi0zLjgzNzYwOSAxLjM1MDkzNC0zLjgzNzYwOUMxLjQxMDcxLTMuODM3NjA5IDEuNDIyNjY1LTMuODQ5NTY0IDEuNTQyMjE3LTMuOTkzMDI2QzEuODc2OTYxLTQuNDgzMTg4IDIuNDM4ODU0LTQuNzcwMTEyIDMuMDM2NjEzLTQuNzcwMTEyQzMuNjcwMjM3LTQuNzcwMTEyIDMuOTgxMDcxLTQuMTg0MzA5IDQuMDc2NzEyLTMuOTgxMDcxQzQuMjc5OTUtMy41MTQ4MTkgNC4yOTE5MDUtMi45MjkwMTYgNC4yOTE5MDUtMi40NzQ3MlM0LjI5MTkwNS0xLjMzODk3OSAzLjk1NzE2MS0uODAwOTk2QzMuNjk0MTQ3LS4zNzA2MSAzLjIyNzg5NS0uMDcxNzMxIDIuNzAxODY4LS4wNzE3MzFDMS45MTI4MjctLjA3MTczMSAxLjEzNTc0MS0uNjA5NzE0IC45MjA1NDgtMS40ODI0NDFDLjk4MDMyNC0xLjQ1ODUzMSAxLjA1MjA1NS0xLjQ0NjU3NSAxLjExMTgzMS0xLjQ0NjU3NUMxLjMxNTA2OC0xLjQ0NjU3NSAxLjYzNzg1OC0xLjU2NjEyNyAxLjYzNzg1OC0xLjk3MjYwM0MxLjYzNzg1OC0yLjMwNzM0NyAxLjQxMDcxLTIuNDk4NjMgMS4xMTE4MzEtMi40OTg2M0MuODk2NjM4LTIuNDk4NjMgLjU4NTgwMy0yLjM5MTAzNCAuNTg1ODAzLTEuOTI0NzgyQy41ODU4MDMtLjkwODU5MyAxLjM5ODc1NSAuMjUxMDU5IDIuNzI1Nzc4IC4yNTEwNTlDNC4wNzY3MTIgLjI1MTA1OSA1LjI2MDI3NC0uODg0NjgyIDUuMjYwMjc0LTIuNDAyOTg5QzUuMjYwMjc0LTMuODI1NjU0IDQuMzAzODYxLTUuMDA5MjE1IDMuMDQ4NTY4LTUuMDA5MjE1QzIuMzY3MTIzLTUuMDA5MjE1IDEuODQxMDk2LTQuNzEwMzM2IDEuNTMwMjYyLTQuMzc1NTkyVi02Ljg1MDMxMVonLz4KPC9kZWZzPgo8ZyBpZD0ncGFnZTEnIHRyYW5zZm9ybT0nbWF0cml4KDEuMTMgMCAwIDEuMTMgLTYzLjk4NjA0MyAtNjUuNTYyNiknPgo8dXNlIHg9JzU2LjQxMzI2NycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNTMnLz4KPHVzZSB4PSc2Mi4yNjYyNTcnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTExNScvPgo8dXNlIHg9JzY3Ljc4MDI2MycgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzAtMTAxJy8+Cjx1c2UgeD0nNzMuMjA1NzAzJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0xMTAnLz4KPHVzZSB4PSc4MC4xOTMzMDknIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTEyMCcvPgo8dXNlIHg9Jzg5LjUwMjA2JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS00MycvPgo8dXNlIHg9JzEwMS4yNjMzNzUnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTQ5Jy8+Cjx1c2UgeD0nMTA3LjExNjM2NScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtNTAnLz4KPHVzZSB4PScxMTIuOTY5MzU1JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC05OScvPgo8dXNlIHg9JzExOC4wMDczNDQnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTExMScvPgo8dXNlIHg9JzEyMy42MzQ3ODEnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTExNScvPgo8dXNlIHg9JzEyOS4xNDg3ODcnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cwLTEyMCcvPgo8L2c+Cjwvc3ZnPg==

Resp.: Máximo: 13
          Mínimo: -13


Como posso fazer essa relação?
No meu gabarito, ele diz a respeito de relacionar o coeficiente q está multiplicando o sen.x e o cos.x como lados de um triângulo pitagórico.
Porém, como posso afirmar que eles são realmente lados de um triângulo pitagórico?


Última edição por Betoneira de Natal em Dom 13 Mar 2022, 18:23, editado 1 vez(es)
Betoneira de Natal
Betoneira de Natal
Padawan
Padawan

Mensagens : 57
Data de inscrição : 02/03/2022
Localização : Brasil

Ir para o topo Ir para baixo

Resolvido Re: Máx. e Mín. de expressão trigonométrica.

Mensagem por Elcioschin Dom 13 Mar 2022, 14:09

Leia: https://pir2.forumeiros.com/t150465-o-truque-do-triangulo-retangulo

Quaisquer dois valores reais podem ser catetos de um triângulo retângulo!

y = 5.senx + 12.cosx --> a² = 5² + 12² ---> a = 13

Seja cosθ = 5/13 e senθ = 12/13 --->

y = 13.[(5/13).senx + (12/13).cosx]

y = 13.(senx.cosθ + senθ.cosx) ---> y = 13.sen(x + θ)

Valor máximo ---> x + θ = 90º ---> y(máx) = 13
Valor mínimo ---> x + θ = 270º ---> y(mín) = -13
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73176
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Giovana Martins e Betoneira de Natal gostam desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Máx. e Mín. de expressão trigonométrica.

Mensagem por Giovana Martins Dom 13 Mar 2022, 14:30

Outro jeito:

[latex]\\\mathrm{Desigualdade\ de\ Cauchy-Schwarz:}[/latex]

[latex]\\\\\mathrm{\left ( \alpha _1^2+\alpha _2^2+...+\alpha _n^2 \right )\left ( \beta _1^2+\beta _2^2+...+\beta _n^2 \right )\geq \left ( \alpha _1\beta _1+\alpha _2\beta _2+...+\alpha _n\beta _n \right )^2}[/latex]

[latex]\\\\\mathrm{Para\ o\ nosso\ caso:\ \left ( \alpha _1^2+\alpha _2^2 \right )\left ( \beta _1^2+\beta _2^2 \right )\geq \left ( \alpha _1\beta _1+\alpha _2\beta _2\right )^2}[/latex]

[latex]\\\\ \mathrm{Sendo\ f(x)= 12cos(x)+5sin(x):}[/latex]

[latex]\\\\ \mathrm{\left [ (12)^2+(5)^2 \right ]\left [\underset{1}{ \underbrace{\mathrm{cos^2(x)+sin^2(x)}}} \right ]\geq \left [ 12cos(x)+5sin(x) \right ]^2}[/latex]

[latex]\\\\\mathrm{169\geq \left [ 12cos(x)+5sin(x) \right ]^2\to |12cos(x)+5sin(x)|\leq 13}[/latex]

[latex]\\\\\mathrm{ -13\leq 12cos(x)+5sin(x)\leq 13\to -13\leq f(x)\leq 13}[/latex]

[latex]\\\\\mathrm{\therefore f(x)=\pm 13\to\left\{\begin{matrix}\mathrm{ f_{min}=-13}\\ \mathrm{f_{max}=13} \end{matrix}\right.\ }[/latex]

____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins
Giovana Martins
Grande Mestre
Grande Mestre

Mensagens : 8545
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo

Betoneira de Natal gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Máx. e Mín. de expressão trigonométrica.

Mensagem por Elcioschin Dom 13 Mar 2022, 17:28

Uma terceira solução usando derivadas:

E(x) = 5.senx + 12.cosx ---> Derivando:

E'(x) = 5.cosx + 12.(- senx) ---> E'(x) = 5.cosx - 12.senx

Para termos valores máximos e mínimos devemos ter E'(x) = 0 --->

5.cosx - 12.senx = 0 ---> 5.cosx = 12.senx ---> 25.cos²x = 144.sen²x ---> 25.(1 - sen²x) = 144.sen²x --->

25 = 169.sen²x ---> sen²x = 25/169 --> senx = ± 5/13 ---> cosx = ± 12/13

Basta agora calcular os valores máximo e mínimo.
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73176
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Giovana Martins e Betoneira de Natal gostam desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Máx. e Mín. de expressão trigonométrica.

Mensagem por Betoneira de Natal Dom 13 Mar 2022, 18:23

Muito obrigado pela ajuda, vou estudar as três formas!

Obrigado Elcio e Gi!
Betoneira de Natal
Betoneira de Natal
Padawan
Padawan

Mensagens : 57
Data de inscrição : 02/03/2022
Localização : Brasil

Giovana Martins gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Máx. e Mín. de expressão trigonométrica.

Mensagem por Giovana Martins Dom 13 Mar 2022, 18:28

Uma outra solução a partir da Substituição de Weierstrass.

[latex]\\\mathrm{Seja\ t=tan\left ( \frac{x}{2} \right ),t\in \mathbb{R}.\ Portanto, tem-se:sin\left ( \frac{x}{2} \right )=\frac{t}{\sqrt{1+t^2}}\ e\ cos\left ( \frac{x}{2} \right )=\frac{1}{\sqrt{1+t^2}}}\\\\\mathrm{De\ f(x)=asin(x)+bcos(x)\to f(x)=\frac{at+b}{\sqrt{1+t^2}}\to [f(x)]^2=\frac{a^2t^2+2abt+b^2}{1+t^2}}\\\\\mathrm{a^2t^2+2abt+b^2=[f(x)]^2+[f(x)]^2t^2\to^2\left \{ a^2-[f(x)]^2 \right \}+2abt+b^2-[f(x)]^2=0}\\\\\mathrm{Sendo\ t\in \mathbb{R}\ \therefore \ \Delta \geq 0\leftrightarrow a^2b^2-\left \{ a^2-[f(x)]^2 \right \}\left \{ b^2-[f(x)]^2 \right \}\geq 0\leftrightarrow [f(x)]^2 \left \{ a^2+b^2-[f(x)]^2 \right \}\geq 0}\\\\\mathrm{Logo, [f(x)]^2\geq 0, \forall\ x\in\mathbb{R}. \ Por\ outro\ lado,\left | f(x) \right |\leq \sqrt{a^2+b^2}\to -\sqrt{a^2+b^2}\leq f(x)\leq \sqrt{a^2+b^2}}\\\\\mathrm{Sendo\ a=5\ e\ b=12,tem-se:-\sqrt{(5)^2+(12)^2}\leq f(x)\leq \sqrt{(5)^2+(12)^2}\to -13\leq f(x)\leq 13}[/latex]

Se eu não esqueci de nenhuma restrição ao longo da resolução, creio que assim também seja possível de resolver. Não é uma ideia minha, mas não lembro onde eu vi isso para dar os créditos (tem muito tempo que eu vi isso. Não me lembro bem se é assim mesmo). Eu só lembrei disso, porque o Método da Substituição de Weierstrass é relativamente comum para resolver umas integrais mais chatinhas.

____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins
Giovana Martins
Grande Mestre
Grande Mestre

Mensagens : 8545
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo

Betoneira de Natal gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Máx. e Mín. de expressão trigonométrica.

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos