Conjuntos
3 participantes
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Conjuntos
Se os conjuntos X = {1,2, x} e Y = {y, 4,5} são iguais, podemos dizer que:
a) x = 2 e y = 5
b) x = 5 e y = 1
c) x = y = 3
d) x = 3 e y = 1
GAB: b
Se os conjuntos são iguais, o número central não deveria ser igual em ambos os conjuntos?
Por que na igualdade dos conjuntos foi colocado o 2, e não o 4? Há algum critério para isso?
a) x = 2 e y = 5
b) x = 5 e y = 1
c) x = y = 3
d) x = 3 e y = 1
GAB: b
Se os conjuntos são iguais, o número central não deveria ser igual em ambos os conjuntos?
Por que na igualdade dos conjuntos foi colocado o 2, e não o 4? Há algum critério para isso?
MatheusHenRyque- Jedi
- Mensagens : 269
Data de inscrição : 30/06/2017
Idade : 26
Localização : Campina Grande, Paraíba e Brasil
Re: Conjuntos
Em conjuntos não faz diferença a posição dos termos
{1, 2, 3} = {1, 3, 2} = {2, 1, 3} = {2, 3, 1} = (3, 1, 2} = {3, 2, 1}
Tens certeza quanto aos elementos de cada conjunto?
{1, 2, 3} = {1, 3, 2} = {2, 1, 3} = {2, 3, 1} = (3, 1, 2} = {3, 2, 1}
Tens certeza quanto aos elementos de cada conjunto?
Elcioschin- Grande Mestre
- Mensagens : 73182
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP
Re: Conjuntos
Sim, mestre. São esses elementos mesmoElcioschin escreveu:Em conjuntos não faz diferença a posição dos termos
{1, 2, 3} = {1, 3, 2} = {2, 1, 3} = {2, 3, 1} = (3, 1, 2} = {3, 2, 1}
Tens certeza quanto aos elementos de cada conjunto?
MatheusHenRyque- Jedi
- Mensagens : 269
Data de inscrição : 30/06/2017
Idade : 26
Localização : Campina Grande, Paraíba e Brasil
Re: Conjuntos
Só podemos dizer que dois conjuntos são iguais se e somente se possuem os mesmos elementos, ou seja, todo elemento de X é elemento de Y, e todo elemento de Y é elemento de X.
danielfogao- Recebeu o sabre de luz
- Mensagens : 165
Data de inscrição : 05/01/2019
Tópicos semelhantes
» Conjuntos numéricos - subtração de conjuntos
» Conjuntos (2)
» P.A - Conjuntos
» Conjuntos
» conjuntos
» Conjuntos (2)
» P.A - Conjuntos
» Conjuntos
» conjuntos
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos