PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Área do Triângulo

4 participantes

Ir para baixo

Área do Triângulo Empty Área do Triângulo

Mensagem por victornery29 Seg 13 Jun 2016, 11:20

Considere o gráfico a seguir, em que a área S é limitada pelos eixos coordenados, pela reta r, que passa por A(0,4) e B(2,0), e pela reta perpendicular ao eixo x no ponto P(xo,0), sendo 0 ≤ xo ≤ 2.

Área do Triângulo S3fsd3
Para que a área S seja a metade da área do triângulo de vértices C(0,0), A e B, o valor de xo deve ser igual a:

(A) 2 − √2
(B) 3 − √2
(C) 4 − 2√2
(D) 5 − 2√2


Desde já agradeço.
victornery29
victornery29
Mestre Jedi
Mestre Jedi

Mensagens : 640
Data de inscrição : 24/04/2012
Idade : 32
Localização : Brasil, Rio de Janeiro.

Ir para o topo Ir para baixo

Área do Triângulo Empty Re: Área do Triângulo

Mensagem por JoaoGabriel Seg 13 Jun 2016, 16:13

Seja D o ponto em que a reta que passa por P toca em AB, e seja DP = h. Os triangulos ABC e DBP sao semelhantes, portanto:

2/(2 - x0) = 4/h --> h = 2*(2 - x0)

Se S = metade da area total, S = area do triangulo DBP. Portanto:

1/2*2*(2 - x0)(2 - x0) = 1/2*1/2*2*4

(2 - x0)^2 = 4 

x0 = 2 - V2
JoaoGabriel
JoaoGabriel
Monitor
Monitor

Mensagens : 2344
Data de inscrição : 30/09/2010
Idade : 29
Localização : Rio de Janeiro

Ir para o topo Ir para baixo

Área do Triângulo Empty Re: Área do Triângulo

Mensagem por Cadlemos Qui 07 Nov 2019, 00:28

JoaoGabriel escreveu:Seja D o ponto em que a reta que passa por P toca em AB, e seja DP = h. Os triangulos ABC e DBP sao semelhantes, portanto:

2/(2 - x0) = 4/h --> h = 2*(2 - x0)

Se S = metade da area total, S = area do triangulo DBP. Portanto:

1/2*2*(2 - x0)(2 - x0) = 1/2*1/2*2*4

(2 - x0)^2 = 4 

x0 = 2 - V2
 

Por que h não é 4/(4-h)  assim como foi no 2/(2-xo) ??????

Cadlemos
Iniciante

Mensagens : 38
Data de inscrição : 05/10/2018
Idade : 26
Localização : Rio de janeiro

Ir para o topo Ir para baixo

Área do Triângulo Empty Re: Área do Triângulo

Mensagem por Elcioschin Qui 07 Nov 2019, 09:47

Semelhança dos triângulos DPB e ACB:

BC/PB = DP/AC ---> 2/(2 - xo) = 4/h
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73175
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Área do Triângulo Empty Re: Área do Triângulo

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos