PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Progressão geométrica

3 participantes

Ir para baixo

Progressão geométrica Empty Progressão geométrica

Mensagem por valeriasjs Dom Out 04 2015, 17:43

Quantos termos da P.G (2, -6, 18, -54, ...) devemos considerar a fim de que a soma resulte 9842?
valeriasjs
valeriasjs
Jedi
Jedi

Mensagens : 424
Data de inscrição : 09/02/2015
Idade : 28
Localização : Aracaju - SE

Ir para o topo Ir para baixo

Progressão geométrica Empty Re: Progressão geométrica

Mensagem por PedroCunha Dom Out 04 2015, 18:08

Olá, valeriasjs.

Temos:

a1 = 2, q = -3. Assim:

\\ S_n = \frac{a_1 \cdot (q^n - 1)}{q -1} \therefore 9842 = \frac{2 \cdot \left( (-3)^n - 1 \right)}{-3-1} \therefore -19683 = (-3)^n \therefore (-3)^9 = (-3)^n \Leftrightarrow n = 9  

Att.,
Pedro
PedroCunha
PedroCunha
Monitor
Monitor

Mensagens : 4639
Data de inscrição : 13/05/2013
Idade : 28
Localização : Viçosa, MG, Brasil

Ir para o topo Ir para baixo

Progressão geométrica Empty Re: Progressão geométrica

Mensagem por ivomilton Dom Out 04 2015, 18:45

valeriasjs escreveu:Quantos termos da P.G (2, -6, 18, -54, ...) devemos considerar a fim de que a soma resulte 9842?
Boa noite, valeria sjs,

a1 = 2
q = -6/2 = -3
Sn = 9842

Sn = a1*[q^n - 1]/(q-1)

9842 = 2*[(-3)^n - 1]/(-3-1) = [2*(-3)^n - 1]/(-4)

(-3)^n - 1 = (-2)*9842= -19684

(-3)^n - 1 = -19684 + 1 = -19683

(-3)^9 = -19683

n = 9




Um abraço.
ivomilton
ivomilton
Membro de Honra
 Membro de Honra

Mensagens : 4994
Data de inscrição : 08/07/2009
Idade : 92
Localização : São Paulo - Capital

Ir para o topo Ir para baixo

Progressão geométrica Empty Re: Progressão geométrica

Mensagem por PedroCunha Dom Out 04 2015, 18:53

Mestre Ivo, creio que o senhor se equivocou.

Veja os nove primeiros termos da P.G.:

2, -6, 18, -54, 162, -486,1458,-4374, 13122

Somando-os chegamos em 9842.

Grande abraço!
PedroCunha
PedroCunha
Monitor
Monitor

Mensagens : 4639
Data de inscrição : 13/05/2013
Idade : 28
Localização : Viçosa, MG, Brasil

Ir para o topo Ir para baixo

Progressão geométrica Empty Re: Progressão geométrica

Mensagem por ivomilton Dom Out 04 2015, 21:21

PedroCunha escreveu:Mestre Ivo, creio que o senhor se equivocou.

Veja os nove primeiros termos da P.G.:

2, -6, 18, -54, 162, -486,1458,-4374, 13122

Somando-os chegamos em 9842.

Grande abraço!
Boa noite, Pedro.

Atentando para o que escrevi em minha resolução, não estou vendo onde foi que me equivoquei.
O amigo poderia fazer a gentileza de me indicar onde?
Desde já lhe agradeço.
Abraços.
Ivomilton
ivomilton
ivomilton
Membro de Honra
 Membro de Honra

Mensagens : 4994
Data de inscrição : 08/07/2009
Idade : 92
Localização : São Paulo - Capital

Ir para o topo Ir para baixo

Progressão geométrica Empty Re: Progressão geométrica

Mensagem por PedroCunha Dom Out 04 2015, 21:30

Mestre, o senhor parece já ter corrigido a sua resposta.

Tenha uma boa noite!
PedroCunha
PedroCunha
Monitor
Monitor

Mensagens : 4639
Data de inscrição : 13/05/2013
Idade : 28
Localização : Viçosa, MG, Brasil

Ir para o topo Ir para baixo

Progressão geométrica Empty Re: Progressão geométrica

Mensagem por valeriasjs Seg Out 05 2015, 17:37

Obrigada pela ajuda!
valeriasjs
valeriasjs
Jedi
Jedi

Mensagens : 424
Data de inscrição : 09/02/2015
Idade : 28
Localização : Aracaju - SE

Ir para o topo Ir para baixo

Progressão geométrica Empty Re: Progressão geométrica

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos