Questão de função exponencial
4 participantes
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Questão de função exponencial
Determinar o conjunto solução da equação 4^2 + 3(2^x+1) = 16.
Minha maior dúvida é sobre o que fazer com o 3 no meio da questão, obrigado pela atenção
Minha maior dúvida é sobre o que fazer com o 3 no meio da questão, obrigado pela atenção
eduardo269- Iniciante
- Mensagens : 13
Data de inscrição : 24/05/2013
Idade : 27
Localização : Brazil
Re: Questão de função exponencial
____________________________________________
← → ↛ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇
ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir- Monitor
- Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil
Re: Questão de função exponencial
Eu tinha escrito a pergunta errada, onde era 4^2 + 3(2^x+1) = 16 na verdade era 4^x + 3(2^x+1) = 16, mas consegui achar o resultado trocando as variáveis. Obrigado pela ajuda, de qualquer forma
eduardo269- Iniciante
- Mensagens : 13
Data de inscrição : 24/05/2013
Idade : 27
Localização : Brazil
Re: Questão de função exponencial
Poste a sua resolução. Aqui estamos tanto para ajudar quanto ser ajudado. Sua resolução engrandece o fórum e façamos com que aprendamos mais.
____________________________________________
← → ↛ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇
ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir- Monitor
- Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil
Re: Questão de função exponencial
eduardo269
Se você chegou ao resultado, é porque você conhece a resposta da sua questão.
Assim, você não está respeitando a Regra XI do fórum:
Por favor, leia TODAS as Regras do fórum e siga-as nas próximas postagens!!!
Se você chegou ao resultado, é porque você conhece a resposta da sua questão.
Assim, você não está respeitando a Regra XI do fórum:
Por favor, leia TODAS as Regras do fórum e siga-as nas próximas postagens!!!
Elcioschin- Grande Mestre
- Mensagens : 73175
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP
Nina Luizet- matadora
- Mensagens : 1215
Data de inscrição : 21/06/2014
Idade : 25
Localização : Brasil, RN , Mossoró
Re: Questão de função exponencial
____________________________________________
← → ↛ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇
ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir- Monitor
- Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil
Re: Questão de função exponencial
É por isso que o LATEX é tão útil.
Muito bom, Carlos.
Muito bom, Carlos.
Nina Luizet- matadora
- Mensagens : 1215
Data de inscrição : 21/06/2014
Idade : 25
Localização : Brasil, RN , Mossoró
Re: Questão de função exponencial
Infelizmente o colega Eduardo não postou a sua resolução nem informou qual é o gabarito
Elcioschin- Grande Mestre
- Mensagens : 73175
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP
Re: Questão de função exponencial
E nem esclareceu se era 2x+1 ou 2x +1.Elcioschin escreveu:Infelizmente o colega Eduardo não postou a sua resolução nem informou qual é o gabarito
Nina Luizet- matadora
- Mensagens : 1215
Data de inscrição : 21/06/2014
Idade : 25
Localização : Brasil, RN , Mossoró
Tópicos semelhantes
» Questão Teórica ITA Função Par e Função Ímpar
» Questão Função Afim Lei e Gráfico da Função.
» Questão de função.
» Questão UFV de função
» Questão de função
» Questão Função Afim Lei e Gráfico da Função.
» Questão de função.
» Questão UFV de função
» Questão de função
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos