PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Função Quadrática - Valor de k

3 participantes

Ir para baixo

Função Quadrática -  Valor de k Empty Função Quadrática - Valor de k

Mensagem por magcamile Dom 15 Fev 2015, 10:33

Sejam "x1" e "x2" números reais, zeros da equação (2-k)x² + 4kx + k + 1 = 0. Se x1>0 e x2<0, deve-se ter:

Gabarito: k <-1 ou k>2

Alguém pode me ajudar, por favor?
magcamile
magcamile
Mestre Jedi
Mestre Jedi

Mensagens : 612
Data de inscrição : 02/11/2014
Idade : 28
Localização : MG

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por Carlos Adir Dom 15 Fev 2015, 12:01

f(x)=(2-k)x²+ 4kx + k+1
Queremos que as raizes, uma seja positiva, e outra será negativa.

Sabemos que em uma função do modo ax²+bx+c, terá concavidade para baixo se a<0 e concavidade para cima se a>0
Ou seja, na função original, teremos que f(x) terá concavidade para cima, quando (2-k)>0 --> k<2. E terá concavidade para baixo quando (2-k)<0 --> k>2.

No primeiro caso, temos que f(0) será menor que zero. Ou seja:
f(0)=(2-k)0²+4.k . 0 + k+1 < 0 --> k+1<0 --> k<-1
Disto, tiramos que k<-1 será uma solução.

No segundo caso, temos que f(0) será maior que zero. Ou seja:
f(0)=(2-k)0²+4.k.0+k+1>0 --> k+1>0 --> k>-1
Disto, podemos tirar que este intervalo deve ser maior que -1, e maior que 2 ao mesmo tempo.
Assim, a solução para o segundo caso é k>2

Resposta final:
k<-1     ou    k>2

Questão semelhante é a abaixo:
Determine os valores de m

____________________________________________
← → ↛ ↔️ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇ 
♏️  ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir
Carlos Adir
Monitor
Monitor

Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por magcamile Dom 15 Fev 2015, 12:16

"Disto, podemos tirar que este intervalo deve ser maior que -1, e maior que 2 ao mesmo tempo."

Como você fez essa "interseção"? não entendi Shocked
magcamile
magcamile
Mestre Jedi
Mestre Jedi

Mensagens : 612
Data de inscrição : 02/11/2014
Idade : 28
Localização : MG

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por Elcioschin Dom 15 Fev 2015, 12:33

Não foi o que o Carlos sscreveu:

k < - 1 ---> (e não maior que - 1) como você escreveu)

k > 2 (tanto o Carlos como você escreveram certo)
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73182
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por magcamile Dom 15 Fev 2015, 12:38

Exato é: k <-1 ou k>2

mas como o senhor chegou a essa "interseção" ?
magcamile
magcamile
Mestre Jedi
Mestre Jedi

Mensagens : 612
Data de inscrição : 02/11/2014
Idade : 28
Localização : MG

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por Elcioschin Dom 15 Fev 2015, 12:42

Não existe nenhuma interseção

x < - 1 é a solução quando a < 0 (a = 2 - k)

x > 2 é a solução quando a > 0

Quando o Carlos diz: disto podemos dizer que k > - 1 e k > 2 ---> a 2ª restrição é mais completa que a 1ª

Por exemplo a solução k = 0 atende k > - 1  mas NÃO atende k > 2 ---> Logo a solução real é k > 2
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73182
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por magcamile Dom 15 Fev 2015, 13:05

Pessoal, muito obrigada pela paciência em me explicar. Mas infelizmente eu não consegui compreender, meu livro não me deu base nenhuma pra resolver esse exercício... Vou tentar pesquisar mais sobre 😢
magcamile
magcamile
Mestre Jedi
Mestre Jedi

Mensagens : 612
Data de inscrição : 02/11/2014
Idade : 28
Localização : MG

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por Elcioschin Dom 15 Fev 2015, 13:20

magcamile

É muito simples a explicação para a análise quando a > 0

O Carlos Adir achou corretamente duas soluções: k > -1 e k > 2

A solução k > - 1 NÃO atende a solução k > 2 no intervalo ]-1, 2[

Por exemplo para k = 0 ou k = 1 a solução k > -1 é atendida pois 0 > -1 e 1 > -1

Já as soluções k > 0 e k = 1 NÃO atendem a solução k > 2 (pois, 0 < 2 e 1 < 2)

Assim, a interseção das duas soluções é x > 2 ---> Qualquer valor maior que 2 atende x > - 1 e x > 2


Última edição por Elcioschin em Dom 15 Fev 2015, 13:22, editado 1 vez(es)
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73182
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por Carlos Adir Dom 15 Fev 2015, 13:21

Eu separei em dois casos. 
1) O primeiro quando a concavidade é para cima
2) O Segundo quando a concavidade é para baixo.

1) A concavidade será para cima quando k<2
2) A concavidade será para baixo quando k>2

MAS a condição não é esta.

1) Quando a concavidade é para cima, é necessário que o número seja menor que 2. Mas as raizes não darão certo se -1Ou seja, em 1) se escolhermos k=0, a função terá concavidade para cima, mas as raizes não darão certo, como o gráfico abaixo mostra:
Função Quadrática -  Valor de k 1L09NTL
Ou seja, em 1) devemos ter que k deve ser AO MESMO TEMPO menor que 2, e menor que -1, ou seja, deve ser menor que -1.

2)Quando a concavidade é para baixo, é necessário que o número seja maior que 2. Mas as raizes dariam certo se -1Ou seja, em 2) se escolhermos k=1, a função terá concavidade para cima, então não obtemos êxito. A imagem mostra abaixo:
Função Quadrática -  Valor de k C2yx7Za
Ou seja, em 2) devemos ter que k>-1 e k>2 AO MESMO TEMPO. Isto significa se pegarmos k=1, satisfazerá k>-1, mas não k>2.

Clique no link abaixo, e vá variando o valor de k para ver como funciona:
Função

____________________________________________
← → ↛ ↔️ ⇌ ⇔ ⇐ ⇒ ⇏ ➥
⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ º ª ⁿ ⁱ
₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ₐ ₑ ₒ ₓ ₔ
∴ ≈ ≠ ≡ ≢ ≤ ≥ × ± ∓ ∑ ∏ √ ∛ ∜ ∝ ∞
∀ ∃ ∈ ∉ ⊂ ⊄ ⋂ ⋃ ∧ ∨ ℝ ℕ ℚ ℤ ℂ
⊥ ║ ∡ ∠ ∢ ⊿ △ □ ▭ ◊ ○ ∆ ◦ ⊙ ⊗ ◈
Αα Ββ Γγ Δδ Εε Ζζ Ηη Θθ Ιι Κκ Λλ Μμ Νν Ξξ Οο Ππ Ρρ Σσς Ττ Υυ Φφ Χχ Ψψ Ωω ϑ ϒ ϖ ƒ ij ℓ
∫ ∬ ∭ ∳ ∂ ∇ 
♏️  ℛ ℜ ℰ ℳ ℊ ℒ
Carlos Adir
Carlos Adir
Monitor
Monitor

Mensagens : 2820
Data de inscrição : 27/08/2014
Idade : 28
Localização : Gurupi - TO - Brasil

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por magcamile Dom 15 Fev 2015, 14:49

* pra f(0)<0 eu tenho k<-1    e pra a>0 eu tenho k>2   Só que 0 não dá, porque a concavidade fica pra cima. Então eu uso a k>2

*pra f(0)>0 eu tenho k>-1   e pra a >0  eu tenho k<2 mas nesse caso tanto se k<2 ou k>-1 eu tenho a concavidade voltada pra cima, o que respeita a restrição. (?) Não entendi a restrição pra esse caso.
magcamile
magcamile
Mestre Jedi
Mestre Jedi

Mensagens : 612
Data de inscrição : 02/11/2014
Idade : 28
Localização : MG

Ir para o topo Ir para baixo

Função Quadrática -  Valor de k Empty Re: Função Quadrática - Valor de k

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos