Progressão aritimetica
3 participantes
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Progressão aritimetica
A soma dos primeiros n termos de uma progressão aritimetica é 3n^2; o primeiro termo e a razão são , respectivamente , 3 e r . Calcule o valor de r
a)2
b)3
c)6
d)7
e)9
Observação : a resposta correta é a letra c) 6 . Se puder explicar passo a passo ficarei grata .
a)2
b)3
c)6
d)7
e)9
Observação : a resposta correta é a letra c) 6 . Se puder explicar passo a passo ficarei grata .
Lara Christina Rocha Nune- Iniciante
- Mensagens : 21
Data de inscrição : 14/01/2024
Giovana Martins gosta desta mensagem
Re: Progressão aritimetica
[latex]\\\mathrm{n=1\to a_1=3\cdot (1)^2\ \therefore\ a_1=3}\\\\ \mathrm{n=2\to a_1+a_2=3+a_2=3\cdot (2)^2\ \therefore\ a_2=9}\\\\ \mathrm{\therefore\ r=a_2-a_1=9-3=6}[/latex]
____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins- Grande Mestre
- Mensagens : 8544
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo
kakaneves999@gmail.com e Lara Christina Rocha Nune gostam desta mensagem
Re: Progressão aritimetica
Sn=3n²=(a1+an)n(1/2)
A questão deu a1=3
Vamos calcular a2:
a2=3+(n-1)r
a2=3+r
Calculando a soma com dois termos ficará;
Sn=3(2)²
Sn=12
Só que Sn também é igual à = (a1+an)n/2
Logo ficará;
12=(a1+a2)2/2
12=3+3+r
12=6+r
logo r=6
Bons estudos!!!!
A questão deu a1=3
Vamos calcular a2:
a2=3+(n-1)r
a2=3+r
Calculando a soma com dois termos ficará;
Sn=3(2)²
Sn=12
Só que Sn também é igual à = (a1+an)n/2
Logo ficará;
12=(a1+a2)2/2
12=3+3+r
12=6+r
logo r=6
Bons estudos!!!!
kakaneves999@gmail.com- Recebeu o sabre de luz
- Mensagens : 144
Data de inscrição : 11/11/2023
Idade : 20
Localização : São João de Meriti, Rj, BXD Cruel!!!
Giovana Martins e Lara Christina Rocha Nune gostam desta mensagem
Re: Progressão aritimetica
Desculpa gi, internet daqui tá ruim e eu não tinha visto a sua resolução kkkkkk.
kakaneves999@gmail.com- Recebeu o sabre de luz
- Mensagens : 144
Data de inscrição : 11/11/2023
Idade : 20
Localização : São João de Meriti, Rj, BXD Cruel!!!
Giovana Martins gosta desta mensagem
Re: Progressão aritimetica
Tudo em paz . Vira e mexe alguém é mais rápido que eu na hora de postar. Quanto mais soluções, melhor.
____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins- Grande Mestre
- Mensagens : 8544
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo
Tópicos semelhantes
» progressão aritimética
» Progressão aritimética
» Progressão Aritimética
» Progressão Aritimetica
» Progressão aritimética
» Progressão aritimética
» Progressão Aritimética
» Progressão Aritimetica
» Progressão aritimética
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos