PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Números Complexos

3 participantes

Ir para baixo

Números Complexos Empty Números Complexos

Mensagem por Andremar Dom 29 maio 2022, 11:44

Dado z = cos 10º + i.sen 10º, então Números Complexos LC2KwAAAABJRU5ErkJggg== é igual a:

a) z²
b) -1
c) 0
d) 1
e) z³

Andremar
Iniciante

Mensagens : 21
Data de inscrição : 17/03/2022
Idade : 43

Ir para o topo Ir para baixo

Números Complexos Empty Re: Números Complexos

Mensagem por gilberto97 Dom 29 maio 2022, 11:57

Bom dia. 

z = cos(10°) + i.sen(10°)

Transformando para a forma exponencial:

z = exp(i*10°)

Assim, z^n = exp(i*10°*n). 

Soma dos n primeiros termos de uma PG com q = z e a1 = z:

S = z*(z^n - 1) / (z - 1)

Como n = 180 e z = exp(i*10°):

S = exp(i*10°)*(exp(i*10°*180) - 1) / (exp(i*10°) - 1)

Sabemos que exp(i*180°) = cos(180°) + i*sen(180°) = -1. Assim,

exp(i*1800°) =  exp(i*180°)^10 = (-1)^10 = 1. Portanto, 

S = exp(i*10°)*(exp(i*1800°) - 1) / (exp(i*10°) - 1)

S = exp(i*10°)*(1 - 1) / (exp(i*10°) - 1)

S = 0

Busque outras formas de fazer, é um bom exercício.

Código:
# Código iniciante em python para solucionar o problema

import numpy as np

z = np.exp(1j*10*np.pi/180)

L = [z ** i for i in range(1, 181)]

S = sum(L)
gilberto97
gilberto97
Fera
Fera

Mensagens : 590
Data de inscrição : 12/03/2014
Idade : 27
Localização : São Luís, Maranhão, Brasil

Ir para o topo Ir para baixo

Números Complexos Empty Re: Números Complexos

Mensagem por Elcioschin Dom 29 maio 2022, 12:22

Estávamos sentindo saudades das suas excelentes resoluções, gilberto97 !!!
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73182
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Números Complexos Empty Re: Números Complexos

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos