PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Tangente a curva

2 participantes

Ir para baixo

Resolvido Tangente a curva

Mensagem por Bergamotinha OwO Qui 07 Abr 2022, 23:11

Encontre uma equação da reta tangente à curva no ponto (0,1/2)
Tangente a curva Svg+xml;base64,PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPCEtLSBHZW5lcmF0ZWQgYnkgQ29kZUNvZ3Mgd2l0aCBkdmlzdmdtIDIuMTEuMSAtLT4KPHN2ZyB2ZXJzaW9uPScxLjEnIHhtbG5zPSdodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZycgeG1sbnM6eGxpbms9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkveGxpbmsnIHdpZHRoPScxNTcuODU4Mjk1cHQnIGhlaWdodD0nMTQuOTU3ODc1cHQnIHZpZXdCb3g9Jy0uMjM5MDUxIC0uMjM1MjU0IDE1Ny44NTgyOTUgMTQuOTU3ODc1Jz4KPGRlZnM+CjxwYXRoIGlkPSdnMC0wJyBkPSdNNy44Nzg0NTYtMi43NDk2ODlDOC4wODE2OTQtMi43NDk2ODkgOC4yOTY4ODctMi43NDk2ODkgOC4yOTY4ODctMi45ODg3OTJTOC4wODE2OTQtMy4yMjc4OTUgNy44Nzg0NTYtMy4yMjc4OTVIMS40MTA3MUMxLjIwNzQ3Mi0zLjIyNzg5NSAuOTkyMjc5LTMuMjI3ODk1IC45OTIyNzktMi45ODg3OTJTMS4yMDc0NzItMi43NDk2ODkgMS40MTA3MS0yLjc0OTY4OUg3Ljg3ODQ1NlonLz4KPHBhdGggaWQ9J2czLTQwJyBkPSdNMy44ODU0MyAyLjkwNTEwNkMzLjg4NTQzIDIuODY5MjQgMy44ODU0MyAyLjg0NTMzIDMuNjgyMTkyIDIuNjQyMDkyQzIuNDg2Njc1IDEuNDM0NjIgMS44MTcxODYtLjUzNzk4MyAxLjgxNzE4Ni0yLjk3NjgzN0MxLjgxNzE4Ni01LjI5NjEzOSAyLjM3OTA3OC03LjI5MjY1MyAzLjc2NTg3OC04LjcwMzM2MkMzLjg4NTQzLTguODEwOTU5IDMuODg1NDMtOC44MzQ4NjkgMy44ODU0My04Ljg3MDczNUMzLjg4NTQzLTguOTQyNDY2IDMuODI1NjU0LTguOTY2Mzc2IDMuNzc3ODMzLTguOTY2Mzc2QzMuNjIyNDE2LTguOTY2Mzc2IDIuNjQyMDkyLTguMTA1NjA0IDIuMDU2Mjg5LTYuOTMzOTk4QzEuNDQ2NTc1LTUuNzI2NTI2IDEuMTcxNjA2LTQuNDQ3MzIzIDEuMTcxNjA2LTIuOTc2ODM3QzEuMTcxNjA2LTEuOTEyODI3IDEuMzM4OTc5LS40OTAxNjIgMS45NjA2NDggLjc4OTA0MUMyLjY2NjAwMiAyLjIyMzY2MSAzLjY0NjMyNiAzLjAwMDc0NyAzLjc3NzgzMyAzLjAwMDc0N0MzLjgyNTY1NCAzLjAwMDc0NyAzLjg4NTQzIDIuOTc2ODM3IDMuODg1NDMgMi45MDUxMDZaJy8+CjxwYXRoIGlkPSdnMy00MScgZD0nTTMuMzcxMzU3LTIuOTc2ODM3QzMuMzcxMzU3LTMuODg1NDMgMy4yNTE4MDYtNS4zNjc4NyAyLjU4MjMxNi02Ljc1NDY3QzEuODc2OTYxLTguMTg5MjkgLjg5NjYzOC04Ljk2NjM3NiAuNzY1MTMxLTguOTY2Mzc2Qy43MTczMS04Ljk2NjM3NiAuNjU3NTM0LTguOTQyNDY2IC42NTc1MzQtOC44NzA3MzVDLjY1NzUzNC04LjgzNDg2OSAuNjU3NTM0LTguODEwOTU5IC44NjA3NzItOC42MDc3MjFDMi4wNTYyODktNy40MDAyNDkgMi43MjU3NzgtNS40Mjc2NDYgMi43MjU3NzgtMi45ODg3OTJDMi43MjU3NzgtLjY2OTQ4OSAyLjE2Mzg4NSAxLjMyNzAyNCAuNzc3MDg2IDIuNzM3NzMzQy42NTc1MzQgMi44NDUzMyAuNjU3NTM0IDIuODY5MjQgLjY1NzUzNCAyLjkwNTEwNkMuNjU3NTM0IDIuOTc2ODM3IC43MTczMSAzLjAwMDc0NyAuNzY1MTMxIDMuMDAwNzQ3Qy45MjA1NDggMy4wMDA3NDcgMS45MDA4NzIgMi4xMzk5NzUgMi40ODY2NzUgLjk2ODM2OUMzLjA5NjM4OS0uMjUxMDU5IDMuMzcxMzU3LTEuNTQyMjE3IDMuMzcxMzU3LTIuOTc2ODM3WicvPgo8cGF0aCBpZD0nZzMtNDMnIGQ9J000Ljc3MDExMi0yLjc2MTY0NEg4LjA2OTczOEM4LjIzNzExMS0yLjc2MTY0NCA4LjQ1MjMwNC0yLjc2MTY0NCA4LjQ1MjMwNC0yLjk3NjgzN0M4LjQ1MjMwNC0zLjIwMzk4NSA4LjI0OTA2Ni0zLjIwMzk4NSA4LjA2OTczOC0zLjIwMzk4NUg0Ljc3MDExMlYtNi41MDM2MTFDNC43NzAxMTItNi42NzA5ODQgNC43NzAxMTItNi44ODYxNzcgNC41NTQ5MTktNi44ODYxNzdDNC4zMjc3NzEtNi44ODYxNzcgNC4zMjc3NzEtNi42ODI5MzkgNC4zMjc3NzEtNi41MDM2MTFWLTMuMjAzOTg1SDEuMDI4MTQ0Qy44NjA3NzItMy4yMDM5ODUgLjY0NTU3OS0zLjIwMzk4NSAuNjQ1NTc5LTIuOTg4NzkyQy42NDU1NzktMi43NjE2NDQgLjg0ODgxNy0yLjc2MTY0NCAxLjAyODE0NC0yLjc2MTY0NEg0LjMyNzc3MVYuNTM3OTgzQzQuMzI3NzcxIC43MDUzNTUgNC4zMjc3NzEgLjkyMDU0OCA0LjU0Mjk2NCAuOTIwNTQ4QzQuNzcwMTEyIC45MjA1NDggNC43NzAxMTIgLjcxNzMxIDQuNzcwMTEyIC41Mzc5ODNWLTIuNzYxNjQ0WicvPgo8cGF0aCBpZD0nZzMtNTAnIGQ9J001LjI2MDI3NC0yLjAwODQ2OEg0Ljk5NzI2QzQuOTYxMzk1LTEuODA1MjMgNC44NjU3NTMtMS4xNDc2OTYgNC43NDYyMDItLjk1NjQxM0M0LjY2MjUxNi0uODQ4ODE3IDMuOTgxMDcxLS44NDg4MTcgMy42MjI0MTYtLjg0ODgxN0gxLjQxMDcxQzEuNzMzNDk5LTEuMTIzNzg2IDIuNDYyNzY1LTEuODg4OTE3IDIuNzczNTk5LTIuMTc1ODQxQzQuNTkwNzg1LTMuODQ5NTY0IDUuMjYwMjc0LTQuNDcxMjMzIDUuMjYwMjc0LTUuNjU0Nzk1QzUuMjYwMjc0LTcuMDI5NjM5IDQuMTcyMzU0LTcuOTUwMTg3IDIuNzg1NTU0LTcuOTUwMTg3Uy41ODU4MDMtNi43NjY2MjUgLjU4NTgwMy01LjczODQ4MUMuNTg1ODAzLTUuMTI4NzY3IDEuMTExODMxLTUuMTI4NzY3IDEuMTQ3Njk2LTUuMTI4NzY3QzEuMzk4NzU1LTUuMTI4NzY3IDEuNzA5NTg5LTUuMzA4MDk1IDEuNzA5NTg5LTUuNjkwNjZDMS43MDk1ODktNi4wMjU0MDUgMS40ODI0NDEtNi4yNTI1NTMgMS4xNDc2OTYtNi4yNTI1NTNDMS4wNDAxLTYuMjUyNTUzIDEuMDE2MTg5LTYuMjUyNTUzIC45ODAzMjQtNi4yNDA1OThDMS4yMDc0NzItNy4wNTM1NDkgMS44NTMwNTEtNy42MDM0ODcgMi42MzAxMzctNy42MDM0ODdDMy42NDYzMjYtNy42MDM0ODcgNC4yNjc5OTUtNi43NTQ2NyA0LjI2Nzk5NS01LjY1NDc5NUM0LjI2Nzk5NS00LjYzODYwNSAzLjY4MjE5Mi0zLjc1MzkyMyAzLjAwMDc0Ny0yLjk4ODc5MkwuNTg1ODAzLS4yODY5MjRWMEg0Ljk0OTQ0TDUuMjYwMjc0LTIuMDA4NDY4WicvPgo8cGF0aCBpZD0nZzMtNjEnIGQ9J004LjA2OTczOC0zLjg3MzQ3NEM4LjIzNzExMS0zLjg3MzQ3NCA4LjQ1MjMwNC0zLjg3MzQ3NCA4LjQ1MjMwNC00LjA4ODY2N0M4LjQ1MjMwNC00LjMxNTgxNiA4LjI0OTA2Ni00LjMxNTgxNiA4LjA2OTczOC00LjMxNTgxNkgxLjAyODE0NEMuODYwNzcyLTQuMzE1ODE2IC42NDU1NzktNC4zMTU4MTYgLjY0NTU3OS00LjEwMDYyM0MuNjQ1NTc5LTMuODczNDc0IC44NDg4MTctMy44NzM0NzQgMS4wMjgxNDQtMy44NzM0NzRIOC4wNjk3MzhaTTguMDY5NzM4LTEuNjQ5ODEzQzguMjM3MTExLTEuNjQ5ODEzIDguNDUyMzA0LTEuNjQ5ODEzIDguNDUyMzA0LTEuODY1MDA2QzguNDUyMzA0LTIuMDkyMTU0IDguMjQ5MDY2LTIuMDkyMTU0IDguMDY5NzM4LTIuMDkyMTU0SDEuMDI4MTQ0Qy44NjA3NzItMi4wOTIxNTQgLjY0NTU3OS0yLjA5MjE1NCAuNjQ1NTc5LTEuODc2OTYxQy42NDU1NzktMS42NDk4MTMgLjg0ODgxNy0xLjY0OTgxMyAxLjAyODE0NC0xLjY0OTgxM0g4LjA2OTczOFonLz4KPHBhdGggaWQ9J2cyLTUwJyBkPSdNMi4yNDc1NzItMS42MjU5MDNDMi4zNzUwOTMtMS43NDU0NTUgMi43MDk4MzgtMi4wMDg0NjggMi44MzczNi0yLjEyMDA1QzMuMzMxNTA3LTIuNTc0MzQ2IDMuODAxNzQzLTMuMDEyNzAyIDMuODAxNzQzLTMuNzM3OTgzQzMuODAxNzQzLTQuNjg2NDI2IDMuMDA0NzMyLTUuMzAwMTI1IDIuMDA4NDY4LTUuMzAwMTI1QzEuMDUyMDU1LTUuMzAwMTI1IC40MjI0MTYtNC41NzQ4NDQgLjQyMjQxNi0zLjg2NTUwNEMuNDIyNDE2LTMuNDc0OTY5IC43MzMyNS0zLjQxOTE3OCAuODQ0ODMyLTMuNDE5MTc4QzEuMDEyMjA0LTMuNDE5MTc4IDEuMjU5Mjc4LTMuNTM4NzMgMS4yNTkyNzgtMy44NDE1OTRDMS4yNTkyNzgtNC4yNTYwNCAuODYwNzcyLTQuMjU2MDQgLjc2NTEzMS00LjI1NjA0Qy45OTYyNjQtNC44Mzc4NTggMS41MzAyNjItNS4wMzcxMTEgMS45MjA3OTctNS4wMzcxMTFDMi42NjIwMTctNS4wMzcxMTEgMy4wNDQ1ODMtNC40MDc0NzIgMy4wNDQ1ODMtMy43Mzc5ODNDMy4wNDQ1ODMtMi45MDkwOTEgMi40NjI3NjUtMi4zMDMzNjIgMS41MjIyOTEtMS4zMzg5NzlMLjUxODA1Ny0uMzAyODY0Qy40MjI0MTYtLjIxNTE5MyAuNDIyNDE2LS4xOTkyNTMgLjQyMjQxNiAwSDMuNTcwNjFMMy44MDE3NDMtMS40MjY2NUgzLjU1NDY3QzMuNTMwNzYtMS4yNjcyNDggMy40NjY5OTktLjg2ODc0MiAzLjM3MTM1Ny0uNzE3MzFDMy4zMjM1MzctLjY1MzU0OSAyLjcxNzgwOC0uNjUzNTQ5IDIuNTkwMjg2LS42NTM1NDlIMS4xNzE2MDZMMi4yNDc1NzItMS42MjU5MDNaJy8+CjxwYXRoIGlkPSdnMS0xMjAnIGQ9J001LjY2Njc1LTQuODc3NzA5QzUuMjg0MTg0LTQuODA1OTc4IDUuMTQwNzIyLTQuNTE5MDU0IDUuMTQwNzIyLTQuMjkxOTA1QzUuMTQwNzIyLTQuMDA0OTgxIDUuMzY3ODctMy45MDkzNCA1LjUzNTI0My0zLjkwOTM0QzUuODkzODk4LTMuOTA5MzQgNi4xNDQ5NTYtNC4yMjAxNzQgNi4xNDQ5NTYtNC41NDI5NjRDNi4xNDQ5NTYtNS4wNDUwODEgNS41NzExMDgtNS4yNzIyMjkgNS4wNjg5OTEtNS4yNzIyMjlDNC4zMzk3MjYtNS4yNzIyMjkgMy45MzMyNS00LjU1NDkxOSAzLjgyNTY1NC00LjMyNzc3MUMzLjU1MDY4NS01LjIyNDQwOCAyLjgwOTQ2NS01LjI3MjIyOSAyLjU5NDI3MS01LjI3MjIyOUMxLjM3NDg0NC01LjI3MjIyOSAuNzI5MjY1LTMuNzA2MTAyIC43MjkyNjUtMy40NDMwODhDLjcyOTI2NS0zLjM5NTI2OCAuNzc3MDg2LTMuMzM1NDkyIC44NjA3NzItMy4zMzU0OTJDLjk1NjQxMy0zLjMzNTQ5MiAuOTgwMzI0LTMuNDA3MjIzIDEuMDA0MjM0LTMuNDU1MDQ0QzEuNDEwNzEtNC43ODIwNjcgMi4yMTE3MDYtNS4wMzMxMjYgMi41NTg0MDYtNS4wMzMxMjZDMy4wOTYzODktNS4wMzMxMjYgMy4yMDM5ODUtNC41MzEwMDkgMy4yMDM5ODUtNC4yNDQwODVDMy4yMDM5ODUtMy45ODEwNzEgMy4xMzIyNTQtMy43MDYxMDIgMi45ODg3OTItMy4xMzIyNTRMMi41ODIzMTYtMS40OTQzOTZDMi40MDI5ODktLjc3NzA4NiAyLjA1NjI4OS0uMTE5NTUyIDEuNDIyNjY1LS4xMTk1NTJDMS4zNjI4ODktLjExOTU1MiAxLjA2NDAxLS4xMTk1NTIgLjgxMjk1MS0uMjc0OTY5QzEuMjQzMzM3LS4zNTg2NTUgMS4zMzg5NzktLjcxNzMxIDEuMzM4OTc5LS44NjA3NzJDMS4zMzg5NzktMS4wOTk4NzUgMS4xNTk2NTEtMS4yNDMzMzcgLjkzMjUwMy0xLjI0MzMzN0MuNjQ1NTc5LTEuMjQzMzM3IC4zMzQ3NDUtLjk5MjI3OSAuMzM0NzQ1LS42MDk3MTRDLjMzNDc0NS0uMTA3NTk3IC44OTY2MzggLjExOTU1MiAxLjQxMDcxIC4xMTk1NTJDMS45ODQ1NTggLjExOTU1MiAyLjM5MTAzNC0uMzM0NzQ1IDIuNjQyMDkyLS44MjQ5MDdDMi44MzMzNzUtLjExOTU1MiAzLjQzMTEzMyAuMTE5NTUyIDMuODczNDc0IC4xMTk1NTJDNS4wOTI5MDIgLjExOTU1MiA1LjczODQ4MS0xLjQ0NjU3NSA1LjczODQ4MS0xLjcwOTU4OUM1LjczODQ4MS0xLjc2OTM2NSA1LjY5MDY2LTEuODE3MTg2IDUuNjE4OTI5LTEuODE3MTg2QzUuNTExMzMzLTEuODE3MTg2IDUuNDk5Mzc3LTEuNzU3NDEgNS40NjM1MTItMS42NjE3NjhDNS4xNDA3MjItLjYwOTcxNCA0LjQ0NzMyMy0uMTE5NTUyIDMuOTA5MzQtLjExOTU1MkMzLjQ5MDkwOS0uMTE5NTUyIDMuMjYzNzYxLS40MzAzODYgMy4yNjM3NjEtLjkyMDU0OEMzLjI2Mzc2MS0xLjE4MzU2MiAzLjMxMTU4Mi0xLjM3NDg0NCAzLjUwMjg2NC0yLjE2Mzg4NUwzLjkyMTI5NS0zLjc4OTc4OEM0LjEwMDYyMy00LjUwNzA5OCA0LjUwNzA5OC01LjAzMzEyNiA1LjA1NzAzNi01LjAzMzEyNkM1LjA4MDk0Ni01LjAzMzEyNiA1LjQxNTY5MS01LjAzMzEyNiA1LjY2Njc1LTQuODc3NzA5WicvPgo8cGF0aCBpZD0nZzEtMTIxJyBkPSdNMy4xNDQyMDkgMS4zMzg5NzlDMi44MjE0MiAxLjc5MzI3NSAyLjM1NTE2OCAyLjE5OTc1MSAxLjc2OTM2NSAyLjE5OTc1MUMxLjYyNTkwMyAyLjE5OTc1MSAxLjA1MjA1NSAyLjE3NTg0MSAuODcyNzI3IDEuNjI1OTAzQy45MDg1OTMgMS42Mzc4NTggLjk2ODM2OSAxLjYzNzg1OCAuOTkyMjc5IDEuNjM3ODU4QzEuMzUwOTM0IDEuNjM3ODU4IDEuNTkwMDM3IDEuMzI3MDI0IDEuNTkwMDM3IDEuMDUyMDU1UzEuMzYyODg5IC42ODE0NDUgMS4xODM1NjIgLjY4MTQ0NUMuOTkyMjc5IC42ODE0NDUgLjU3Mzg0OCAuODI0OTA3IC41NzM4NDggMS40MTA3MUMuNTczODQ4IDIuMDIwNDIzIDEuMDg3OTIgMi40Mzg4NTQgMS43NjkzNjUgMi40Mzg4NTRDMi45NjQ4ODIgMi40Mzg4NTQgNC4xNzIzNTQgMS4zMzg5NzkgNC41MDcwOTggLjAxMTk1NUw1LjY3ODcwNS00LjY1MDU2QzUuNjkwNjYtNC43MTAzMzYgNS43MTQ1Ny00Ljc4MjA2NyA1LjcxNDU3LTQuODUzNzk4QzUuNzE0NTctNS4wMzMxMjYgNS41NzExMDgtNS4xNTI2NzcgNS4zOTE3ODEtNS4xNTI2NzdDNS4yODQxODQtNS4xNTI2NzcgNS4wMzMxMjYtNS4xMDQ4NTcgNC45Mzc0ODQtNC43NDYyMDJMNC4wNTI4MDItMS4yMzEzODJDMy45OTMwMjYtMS4wMTYxODkgMy45OTMwMjYtLjk5MjI3OSAzLjg5NzM4NS0uODYwNzcyQzMuNjU4MjgxLS41MjYwMjcgMy4yNjM3NjEtLjExOTU1MiAyLjY4OTkxMy0uMTE5NTUyQzIuMDIwNDIzLS4xMTk1NTIgMS45NjA2NDgtLjc3NzA4NiAxLjk2MDY0OC0xLjA5OTg3NUMxLjk2MDY0OC0xLjc4MTMyIDIuMjgzNDM3LTIuNzAxODY4IDIuNjA2MjI3LTMuNTYyNjRDMi43Mzc3MzMtMy45MDkzNCAyLjgwOTQ2NS00LjA3NjcxMiAyLjgwOTQ2NS00LjMxNTgxNkMyLjgwOTQ2NS00LjgxNzkzMyAyLjQ1MDgwOS01LjI3MjIyOSAxLjg2NTAwNi01LjI3MjIyOUMuNzY1MTMxLTUuMjcyMjI5IC4zMjI3OS0zLjUzODczIC4zMjI3OS0zLjQ0MzA4OEMuMzIyNzktMy4zOTUyNjggLjM3MDYxLTMuMzM1NDkyIC40NTQyOTYtMy4zMzU0OTJDLjU2MTg5My0zLjMzNTQ5MiAuNTczODQ4LTMuMzgzMzEzIC42MjE2NjktMy41NTA2ODVDLjkwODU5My00LjU1NDkxOSAxLjM2Mjg4OS01LjAzMzEyNiAxLjgyOTE0MS01LjAzMzEyNkMxLjkzNjczNy01LjAzMzEyNiAyLjEzOTk3NS01LjAzMzEyNiAyLjEzOTk3NS00LjYzODYwNUMyLjEzOTk3NS00LjMyNzc3MSAyLjAwODQ2OC0zLjk4MTA3MSAxLjgyOTE0MS0zLjUyNjc3NUMxLjI0MzMzNy0xLjk2MDY0OCAxLjI0MzMzNy0xLjU2NjEyNyAxLjI0MzMzNy0xLjI3OTIwM0MxLjI0MzMzNy0uMTQzNDYyIDIuMDU2Mjg5IC4xMTk1NTIgMi42NTQwNDcgLjExOTU1MkMzLjAwMDc0NyAuMTE5NTUyIDMuNDMxMTMzIC4wMTE5NTUgMy44NDk1NjQtLjQzMDM4NkwzLjg2MTUxOS0uNDE4NDMxQzMuNjgyMTkyIC4yODY5MjQgMy41NjI2NCAuNzUzMTc2IDMuMTQ0MjA5IDEuMzM4OTc5WicvPgo8L2RlZnM+CjxnIGlkPSdwYWdlMScgdHJhbnNmb3JtPSdtYXRyaXgoMS4xMyAwIDAgMS4xMyAtNjMuOTg2MDQzIC02Mi45Njk1OTMpJz4KPHVzZSB4PSc1Ni40MTMyNjcnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2cxLTEyMCcvPgo8dXNlIHg9JzYzLjA2NTM1NCcgeT0nNjAuODE3MjM5JyB4bGluazpocmVmPScjZzItNTAnLz4KPHVzZSB4PSc3MC40NTQzMzMnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2czLTQzJy8+Cjx1c2UgeD0nODIuMjE1NjQ4JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMS0xMjEnLz4KPHVzZSB4PSc4OC4zNTIyOTknIHk9JzYwLjgxNzIzOScgeGxpbms6aHJlZj0nI2cyLTUwJy8+Cjx1c2UgeD0nOTYuNDA1NDQ0JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMy02MScvPgo8dXNlIHg9JzEwOC44MzA5MjQnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2czLTQwJy8+Cjx1c2UgeD0nMTEzLjM4MzI1JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMy01MCcvPgo8dXNlIHg9JzExOS4yMzYyNCcgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtMTIwJy8+Cjx1c2UgeD0nMTI1Ljg4ODMyOCcgeT0nNjAuODE3MjM5JyB4bGluazpocmVmPScjZzItNTAnLz4KPHVzZSB4PScxMzMuMjc3MzA2JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMy00MycvPgo8dXNlIHg9JzE0NS4wMzg2MjEnIHk9JzY1Ljc1MzQyNScgeGxpbms6aHJlZj0nI2czLTUwJy8+Cjx1c2UgeD0nMTUwLjg5MTYxMScgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtMTIxJy8+Cjx1c2UgeD0nMTU3LjAyODI2MycgeT0nNjAuODE3MjM5JyB4bGluazpocmVmPScjZzItNTAnLz4KPHVzZSB4PScxNjQuNDE3MjQxJyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMC0wJy8+Cjx1c2UgeD0nMTc2LjM3MjQwMicgeT0nNjUuNzUzNDI1JyB4bGluazpocmVmPScjZzEtMTIwJy8+Cjx1c2UgeD0nMTgzLjAyNDQ4OScgeT0nNjAuODE3MjM5JyB4bGluazpocmVmPScjZzItNTAnLz4KPHVzZSB4PScxODcuNzU2ODA0JyB5PSc2NS43NTM0MjUnIHhsaW5rOmhyZWY9JyNnMy00MScvPgo8dXNlIHg9JzE5Mi4zMDkxMjknIHk9JzYwLjgxNzIzOScgeGxpbms6aHJlZj0nI2cyLTUwJy8+CjwvZz4KPC9zdmc+

Resp.: Sem gabarito.


Boa noite gente!
Então, nessa daí eu pensei em derivar direto, usando implícita...
Porém, não deu mt certo n
Alguma ideia?

Vlww! cheers


Última edição por Bergamotinha OwO em Sáb 09 Abr 2022, 00:13, editado 1 vez(es)
Bergamotinha OwO
Bergamotinha OwO
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 112
Data de inscrição : 25/10/2021
Localização : Pé de laranjeira, Brasil

Ir para o topo Ir para baixo

Resolvido Re: Tangente a curva

Mensagem por Giovana Martins Sex 08 Abr 2022, 18:28

A ideia é exatamente essa. Derivadas implícitas.

Eu só gostaria de saber se a expressão está correta, pois ao meu ver não faz tanto sentido escrever a expressão x²+y²=(2x²+2y²-x²)² sendo que isso poderia ser escrito como x²+y²=(x²+2y²)². De qualquer forma, supondo que a expressão esteja correta:

[latex]\\\mathrm{x^2+y^2=(x^2+2y^2)^2\to \frac{d}{dx}\left (x^2+y^2 \right )=\frac{d}{dx}\left [\left (x^2+2y^2 \right )^2 \right ]}\\\\ \mathrm{2x+2y\frac{dy}{dx}=2\left (x^2+2y^2 \right )\left [ 2x+4y\frac{dy}{dx} \right ]\to \frac{dy}{dx}=\frac{x\left ( 2x^2+4y^2-1 \right )}{y\left ( 1-4x^2-8y^2 \right )}}\\\\ \mathrm{Para\ \left ( 0,\frac{1}{2} \right ),\frac{dy}{dx}=0\ \therefore \ y=(x-\cancelto{0}{\mathrm{x_0}})\cancelto{0}{\frac{\mathrm{dy}}{\mathrm{dx}}}+\cancelto{\frac{1}{2}}{\mathrm{y_0}}\to y=\frac{1}{2}}[/latex]

Uma ilustração gráfica:

Tangente a curva Oie_t132

Note que o enunciado pede apenas uma única equação da reta tangente à curva fornecida, entretanto, é fácil observar que temos outra curva tangente, a qual corresponde à curva y=-1/2.

____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins
Giovana Martins
Grande Mestre
Grande Mestre

Mensagens : 8563
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo

Ir para o topo Ir para baixo

Resolvido Re: Tangente a curva

Mensagem por Bergamotinha OwO Sex 08 Abr 2022, 21:25

Oi Gi!
Boa noite e obrigado novamente pela ajuda(respondi pra vc no outro tópico q vc me ajudou hj tbm)!

Em relação a equação, achei estranha tbm...
Tanto que, quando eu apliquei a ideia de derivada implícita, não deu certo... Não sei se eu errei conta ou se a expressão está mesma errada...

Mas consegui compreender a ideia de boa!

Brigadão! cheers
Bergamotinha OwO
Bergamotinha OwO
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 112
Data de inscrição : 25/10/2021
Localização : Pé de laranjeira, Brasil

Giovana Martins gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Tangente a curva

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos