PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Igualdade Trigonométrica.

2 participantes

Ir para baixo

Resolvido Igualdade Trigonométrica.

Mensagem por Betoneira de Natal Dom 13 Mar 2022, 08:46

Resolva a equação: Igualdade Trigonométrica. Svg+xml;base64,PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPCEtLSBHZW5lcmF0ZWQgYnkgQ29kZUNvZ3Mgd2l0aCBkdmlzdmdtIDIuMTEuMSAtLT4KPHN2ZyB2ZXJzaW9uPScxLjEnIHhtbG5zPSdodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZycgeG1sbnM6eGxpbms9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkveGxpbmsnIHdpZHRoPScxMzcuNjUyNTI2cHQnIGhlaWdodD0nMjcuMzg5NjI3cHQnIHZpZXdCb3g9Jy0uMjM5MDUxIC0uMjI2OTI5IDEzNy42NTI1MjYgMjcuMzg5NjI3Jz4KPGRlZnM+CjxwYXRoIGlkPSdnMC0wJyBkPSdNNy44Nzg0NTYtMi43NDk2ODlDOC4wODE2OTQtMi43NDk2ODkgOC4yOTY4ODctMi43NDk2ODkgOC4yOTY4ODctMi45ODg3OTJTOC4wODE2OTQtMy4yMjc4OTUgNy44Nzg0NTYtMy4yMjc4OTVIMS40MTA3MUMxLjIwNzQ3Mi0zLjIyNzg5NSAuOTkyMjc5LTMuMjI3ODk1IC45OTIyNzktMi45ODg3OTJTMS4yMDc0NzItMi43NDk2ODkgMS40MTA3MS0yLjc0OTY4OUg3Ljg3ODQ1NlonLz4KPHBhdGggaWQ9J2cyLTQwJyBkPSdNMy44ODU0MyAyLjkwNTEwNkMzLjg4NTQzIDIuODY5MjQgMy44ODU0MyAyLjg0NTMzIDMuNjgyMTkyIDIuNjQyMDkyQzIuNDg2Njc1IDEuNDM0NjIgMS44MTcxODYtLjUzNzk4MyAxLjgxNzE4Ni0yLjk3NjgzN0MxLjgxNzE4Ni01LjI5NjEzOSAyLjM3OTA3OC03LjI5MjY1MyAzLjc2NTg3OC04LjcwMzM2MkMzLjg4NTQzLTguODEwOTU5IDMuODg1NDMtOC44MzQ4NjkgMy44ODU0My04Ljg3MDczNUMzLjg4NTQzLTguOTQyNDY2IDMuODI1NjU0LTguOTY2Mzc2IDMuNzc3ODMzLTguOTY2Mzc2QzMuNjIyNDE2LTguOTY2Mzc2IDIuNjQyMDkyLTguMTA1NjA0IDIuMDU2Mjg5LTYuOTMzOTk4QzEuNDQ2NTc1LTUuNzI2NTI2IDEuMTcxNjA2LTQuNDQ3MzIzIDEuMTcxNjA2LTIuOTc2ODM3QzEuMTcxNjA2LTEuOTEyODI3IDEuMzM4OTc5LS40OTAxNjIgMS45NjA2NDggLjc4OTA0MUMyLjY2NjAwMiAyLjIyMzY2MSAzLjY0NjMyNiAzLjAwMDc0NyAzLjc3NzgzMyAzLjAwMDc0N0MzLjgyNTY1NCAzLjAwMDc0NyAzLjg4NTQzIDIuOTc2ODM3IDMuODg1NDMgMi45MDUxMDZaJy8+CjxwYXRoIGlkPSdnMi00MScgZD0nTTMuMzcxMzU3LTIuOTc2ODM3QzMuMzcxMzU3LTMuODg1NDMgMy4yNTE4MDYtNS4zNjc4NyAyLjU4MjMxNi02Ljc1NDY3QzEuODc2OTYxLTguMTg5MjkgLjg5NjYzOC04Ljk2NjM3NiAuNzY1MTMxLTguOTY2Mzc2Qy43MTczMS04Ljk2NjM3NiAuNjU3NTM0LTguOTQyNDY2IC42NTc1MzQtOC44NzA3MzVDLjY1NzUzNC04LjgzNDg2OSAuNjU3NTM0LTguODEwOTU5IC44NjA3NzItOC42MDc3MjFDMi4wNTYyODktNy40MDAyNDkgMi43MjU3NzgtNS40Mjc2NDYgMi43MjU3NzgtMi45ODg3OTJDMi43MjU3NzgtLjY2OTQ4OSAyLjE2Mzg4NSAxLjMyNzAyNCAuNzc3MDg2IDIuNzM3NzMzQy42NTc1MzQgMi44NDUzMyAuNjU3NTM0IDIuODY5MjQgLjY1NzUzNCAyLjkwNTEwNkMuNjU3NTM0IDIuOTc2ODM3IC43MTczMSAzLjAwMDc0NyAuNzY1MTMxIDMuMDAwNzQ3Qy45MjA1NDggMy4wMDA3NDcgMS45MDA4NzIgMi4xMzk5NzUgMi40ODY2NzUgLjk2ODM2OUMzLjA5NjM4OS0uMjUxMDU5IDMuMzcxMzU3LTEuNTQyMjE3IDMuMzcxMzU3LTIuOTc2ODM3WicvPgo8cGF0aCBpZD0nZzItNTAnIGQ9J001LjI2MDI3NC0yLjAwODQ2OEg0Ljk5NzI2QzQuOTYxMzk1LTEuODA1MjMgNC44NjU3NTMtMS4xNDc2OTYgNC43NDYyMDItLjk1NjQxM0M0LjY2MjUxNi0uODQ4ODE3IDMuOTgxMDcxLS44NDg4MTcgMy42MjI0MTYtLjg0ODgxN0gxLjQxMDcxQzEuNzMzNDk5LTEuMTIzNzg2IDIuNDYyNzY1LTEuODg4OTE3IDIuNzczNTk5LTIuMTc1ODQxQzQuNTkwNzg1LTMuODQ5NTY0IDUuMjYwMjc0LTQuNDcxMjMzIDUuMjYwMjc0LTUuNjU0Nzk1QzUuMjYwMjc0LTcuMDI5NjM5IDQuMTcyMzU0LTcuOTUwMTg3IDIuNzg1NTU0LTcuOTUwMTg3Uy41ODU4MDMtNi43NjY2MjUgLjU4NTgwMy01LjczODQ4MUMuNTg1ODAzLTUuMTI4NzY3IDEuMTExODMxLTUuMTI4NzY3IDEuMTQ3Njk2LTUuMTI4NzY3QzEuMzk4NzU1LTUuMTI4NzY3IDEuNzA5NTg5LTUuMzA4MDk1IDEuNzA5NTg5LTUuNjkwNjZDMS43MDk1ODktNi4wMjU0MDUgMS40ODI0NDEtNi4yNTI1NTMgMS4xNDc2OTYtNi4yNTI1NTNDMS4wNDAxLTYuMjUyNTUzIDEuMDE2MTg5LTYuMjUyNTUzIC45ODAzMjQtNi4yNDA1OThDMS4yMDc0NzItNy4wNTM1NDkgMS44NTMwNTEtNy42MDM0ODcgMi42MzAxMzctNy42MDM0ODdDMy42NDYzMjYtNy42MDM0ODcgNC4yNjc5OTUtNi43NTQ2NyA0LjI2Nzk5NS01LjY1NDc5NUM0LjI2Nzk5NS00LjYzODYwNSAzLjY4MjE5Mi0zLjc1MzkyMyAzLjAwMDc0Ny0yLjk4ODc5MkwuNTg1ODAzLS4yODY5MjRWMEg0Ljk0OTQ0TDUuMjYwMjc0LTIuMDA4NDY4WicvPgo8cGF0aCBpZD0nZzItNTEnIGQ9J00yLjE5OTc1MS00LjI5MTkwNUMxLjk5NjUxMy00LjI3OTk1IDEuOTQ4NjkyLTQuMjY3OTk1IDEuOTQ4NjkyLTQuMTYwMzk5QzEuOTQ4NjkyLTQuMDQwODQ3IDIuMDA4NDY4LTQuMDQwODQ3IDIuMjIzNjYxLTQuMDQwODQ3SDIuNzczNTk5QzMuNzg5Nzg4LTQuMDQwODQ3IDQuMjQ0MDg1LTMuMjAzOTg1IDQuMjQ0MDg1LTIuMDU2Mjg5QzQuMjQ0MDg1LS40OTAxNjIgMy40MzExMzMtLjA3MTczMSAyLjg0NTMzLS4wNzE3MzFDMi4yNzE0ODItLjA3MTczMSAxLjI5MTE1OC0uMzQ2NyAuOTQ0NDU4LTEuMTM1NzQxQzEuMzI3MDI0LTEuMDc1OTY1IDEuNjczNzI0LTEuMjkxMTU4IDEuNjczNzI0LTEuNzIxNTQ0QzEuNjczNzI0LTIuMDY4MjQ0IDEuNDIyNjY1LTIuMzA3MzQ3IDEuMDg3OTItMi4zMDczNDdDLjgwMDk5Ni0yLjMwNzM0NyAuNDkwMTYyLTIuMTM5OTc1IC40OTAxNjItMS42ODU2NzlDLjQ5MDE2Mi0uNjIxNjY5IDEuNTU0MTcyIC4yNTEwNTkgMi44ODExOTYgLjI1MTA1OUM0LjMwMzg2MSAuMjUxMDU5IDUuMzU1OTE1LS44MzY4NjIgNS4zNTU5MTUtMi4wNDQzMzRDNS4zNTU5MTUtMy4xNDQyMDkgNC40NzEyMzMtNC4wMDQ5ODEgMy4zMjM1MzctNC4yMDgyMTlDNC4zNjM2MzYtNC41MDcwOTggNS4wMzMxMjYtNS4zNzk4MjYgNS4wMzMxMjYtNi4zMTIzMjlDNS4wMzMxMjYtNy4yNTY3ODcgNC4wNTI4MDItNy45NTAxODcgMi44OTMxNTEtNy45NTAxODdDMS42OTc2MzQtNy45NTAxODcgLjgxMjk1MS03LjIyMDkyMiAuODEyOTUxLTYuMzQ4MTk0Qy44MTI5NTEtNS44Njk5ODggMS4xODM1NjItNS43NzQzNDYgMS4zNjI4ODktNS43NzQzNDZDMS42MTM5NDgtNS43NzQzNDYgMS45MDA4NzItNS45NTM2NzQgMS45MDA4NzItNi4zMTIzMjlDMS45MDA4NzItNi42OTQ4OTQgMS42MTM5NDgtNi44NjIyNjcgMS4zNTA5MzQtNi44NjIyNjdDMS4yNzkyMDMtNi44NjIyNjcgMS4yNTUyOTMtNi44NjIyNjcgMS4yMTk0MjctNi44NTAzMTFDMS42NzM3MjQtNy42NjMyNjMgMi43OTc1MDktNy42NjMyNjMgMi44NTcyODUtNy42NjMyNjNDMy4yNTE4MDYtNy42NjMyNjMgNC4wMjg4OTItNy40ODM5MzUgNC4wMjg4OTItNi4zMTIzMjlDNC4wMjg4OTItNi4wODUxODEgMy45OTMwMjYtNS40MTU2OTEgMy42NDYzMjYtNC45MDE2MTlDMy4yODc2NzEtNC4zNzU1OTIgMi44ODExOTYtNC4zMzk3MjYgMi41NTg0MDYtNC4zMjc3NzFMMi4xOTk3NTEtNC4yOTE5MDVaJy8+CjxwYXRoIGlkPSdnMi01MicgZD0nTTQuMzE1ODE2LTcuNzgyODE0QzQuMzE1ODE2LTguMDA5OTYzIDQuMzE1ODE2LTguMDY5NzM4IDQuMTQ4NDQzLTguMDY5NzM4QzQuMDUyODAyLTguMDY5NzM4IDQuMDE2OTM2LTguMDY5NzM4IDMuOTIxMjk1LTcuOTI2Mjc2TC4zMjI3OS0yLjM0MzIxM1YtMS45OTY1MTNIMy40NjY5OTlWLS45MDg1OTNDMy40NjY5OTktLjQ2NjI1MiAzLjQ0MzA4OC0uMzQ2NyAyLjU3MDM2MS0uMzQ2N0gyLjMzMTI1OFYwQzIuNjA2MjI3LS4wMjM5MSAzLjU1MDY4NS0uMDIzOTEgMy44ODU0My0uMDIzOTFTNS4xNzY1ODgtLjAyMzkxIDUuNDUxNTU3IDBWLS4zNDY3SDUuMjEyNDUzQzQuMzUxNjgxLS4zNDY3IDQuMzE1ODE2LS40NjYyNTIgNC4zMTU4MTYtLjkwODU5M1YtMS45OTY1MTNINS41MjMyODhWLTIuMzQzMjEzSDQuMzE1ODE2Vi03Ljc4MjgxNFpNMy41MjY3NzUtNi44NTAzMTFWLTIuMzQzMjEzSC42MjE2NjlMMy41MjY3NzUtNi44NTAzMTFaJy8+CjxwYXRoIGlkPSdnMi01NScgZD0nTTUuNjc4NzA1LTcuNDI0MTU5Vi03LjY5OTEyOEgyLjc5NzUwOUMxLjM1MDkzNC03LjY5OTEyOCAxLjMyNzAyNC03Ljg1NDU0NSAxLjI3OTIwMy04LjA4MTY5NEgxLjAxNjE4OUwuNjQ1NTc5LTUuNjkwNjZILjkwODU5M0MuOTQ0NDU4LTUuOTA1ODUzIDEuMDUyMDU1LTYuNjQ3MDczIDEuMjA3NDcyLTYuNzc4NThDMS4zMDMxMTMtNi44NTAzMTEgMi4xOTk3NTEtNi44NTAzMTEgMi4zNjcxMjMtNi44NTAzMTFINC45MDE2MTlMMy42MzQzNzEtNS4wMzMxMjZDMy4zMTE1ODItNC41NjY4NzQgMi4xMDQxMS0yLjYwNjIyNyAyLjEwNDExLS4zNTg2NTVDMi4xMDQxMS0uMjI3MTQ4IDIuMTA0MTEgLjI1MTA1OSAyLjU5NDI3MSAuMjUxMDU5QzMuMDk2Mzg5IC4yNTEwNTkgMy4wOTYzODktLjIxNTE5MyAzLjA5NjM4OS0uMzcwNjFWLS45NjgzNjlDMy4wOTYzODktMi43NDk2ODkgMy4zODMzMTMtNC4xMzY0ODggMy45NDUyMDUtNC45Mzc0ODRMNS42Nzg3MDUtNy40MjQxNTlaJy8+CjxwYXRoIGlkPSdnMi02MScgZD0nTTguMDY5NzM4LTMuODczNDc0QzguMjM3MTExLTMuODczNDc0IDguNDUyMzA0LTMuODczNDc0IDguNDUyMzA0LTQuMDg4NjY3QzguNDUyMzA0LTQuMzE1ODE2IDguMjQ5MDY2LTQuMzE1ODE2IDguMDY5NzM4LTQuMzE1ODE2SDEuMDI4MTQ0Qy44NjA3NzItNC4zMTU4MTYgLjY0NTU3OS00LjMxNTgxNiAuNjQ1NTc5LTQuMTAwNjIzQy42NDU1NzktMy44NzM0NzQgLjg0ODgxNy0zLjg3MzQ3NCAxLjAyODE0NC0zLjg3MzQ3NEg4LjA2OTczOFpNOC4wNjk3MzgtMS42NDk4MTNDOC4yMzcxMTEtMS42NDk4MTMgOC40NTIzMDQtMS42NDk4MTMgOC40NTIzMDQtMS44NjUwMDZDOC40NTIzMDQtMi4wOTIxNTQgOC4yNDkwNjYtMi4wOTIxNTQgOC4wNjk3MzgtMi4wOTIxNTRIMS4wMjgxNDRDLjg2MDc3Mi0yLjA5MjE1NCAuNjQ1NTc5LTIuMDkyMTU0IC42NDU1NzktMS44NzY5NjFDLjY0NTU3OS0xLjY0OTgxMyAuODQ4ODE3LTEuNjQ5ODEzIDEuMDI4MTQ0LTEuNjQ5ODEzSDguMDY5NzM4WicvPgo8cGF0aCBpZD0nZzEtMjUnIGQ9J00zLjA5NjM4OS00LjUwNzA5OEg0LjQ0NzMyM0M0LjEyNDUzMy0zLjE2ODEyIDMuOTIxMjk1LTIuMjk1MzkyIDMuOTIxMjk1LTEuMzM4OTc5QzMuOTIxMjk1LTEuMTcxNjA2IDMuOTIxMjk1IC4xMTk1NTIgNC40MTE0NTcgLjExOTU1MkM0LjY2MjUxNiAuMTE5NTUyIDQuODc3NzA5LS4xMDc1OTcgNC44Nzc3MDktLjMxMDgzNEM0Ljg3NzcwOS0uMzcwNjEgNC44Nzc3MDktLjM5NDUyMSA0Ljc5NDAyMi0uNTczODQ4QzQuNDcxMjMzLTEuMzk4NzU1IDQuNDcxMjMzLTIuNDI2ODk5IDQuNDcxMjMzLTIuNTEwNTg1QzQuNDcxMjMzLTIuNTgyMzE2IDQuNDcxMjMzLTMuNDMxMTMzIDQuNzIyMjkxLTQuNTA3MDk4SDYuMDYxMjdDNi4yMTY2ODctNC41MDcwOTggNi42MTEyMDgtNC41MDcwOTggNi42MTEyMDgtNC44ODk2NjRDNi42MTEyMDgtNS4xNTI2NzcgNi4zODQwNi01LjE1MjY3NyA2LjE2ODg2Ny01LjE1MjY3N0gyLjIzNTYxNkMxLjk2MDY0OC01LjE1MjY3NyAxLjU1NDE3Mi01LjE1MjY3NyAxLjAwNDIzNC00LjU2Njg3NEMuNjkzNC00LjIyMDE3NCAuMzEwODM0LTMuNTg2NTUgLjMxMDgzNC0zLjUxNDgxOVMuMzcwNjEtMy40MTkxNzggLjQ0MjM0MS0zLjQxOTE3OEMuNTI2MDI3LTMuNDE5MTc4IC41Mzc5ODMtMy40NTUwNDQgLjU5Nzc1OC0zLjUyNjc3NUMxLjIxOTQyNy00LjUwNzA5OCAxLjg0MTA5Ni00LjUwNzA5OCAyLjEzOTk3NS00LjUwNzA5OEgyLjgyMTQyQzIuNTU4NDA2LTMuNjEwNDYxIDIuMjU5NTI3LTIuNTcwMzYxIDEuMjc5MjAzLS40NzgyMDdDMS4xODM1NjItLjI4NjkyNCAxLjE4MzU2Mi0uMjYzMDE0IDEuMTgzNTYyLS4xOTEyODNDMS4xODM1NjIgLjA1OTc3NiAxLjM5ODc1NSAuMTE5NTUyIDEuNTA2MzUxIC4xMTk1NTJDMS44NTMwNTEgLjExOTU1MiAxLjk0ODY5Mi0uMTkxMjgzIDIuMDkyMTU0LS42OTM0QzIuMjgzNDM3LTEuMzAzMTEzIDIuMjgzNDM3LTEuMzI3MDI0IDIuNDAyOTg5LTEuODA1MjNMMy4wOTYzODktNC41MDcwOThaJy8+CjxwYXRoIGlkPSdnMS05OScgZD0nTTQuNjc0NDcxLTQuNDk1MTQzQzQuNDQ3MzIzLTQuNDk1MTQzIDQuMzM5NzI2LTQuNDk1MTQzIDQuMTcyMzU0LTQuMzUxNjgxQzQuMTAwNjIzLTQuMjkxOTA1IDMuOTY5MTE2LTQuMTEyNTc4IDMuOTY5MTE2LTMuOTIxMjk1QzMuOTY5MTE2LTMuNjgyMTkyIDQuMTQ4NDQzLTMuNTM4NzMgNC4zNzU1OTItMy41Mzg3M0M0LjY2MjUxNi0zLjUzODczIDQuOTg1MzA1LTMuNzc3ODMzIDQuOTg1MzA1LTQuMjU2MDRDNC45ODUzMDUtNC44Mjk4ODggNC40MzUzNjctNS4yNzIyMjkgMy42MTA0NjEtNS4yNzIyMjlDMi4wNDQzMzQtNS4yNzIyMjkgLjQ3ODIwNy0zLjU2MjY0IC40NzgyMDctMS44NjUwMDZDLjQ3ODIwNy0uODI0OTA3IDEuMTIzNzg2IC4xMTk1NTIgMi4zNDMyMTMgLjExOTU1MkMzLjk2OTExNiAuMTE5NTUyIDQuOTk3MjYtMS4xNDc2OTYgNC45OTcyNi0xLjMwMzExM0M0Ljk5NzI2LTEuMzc0ODQ0IDQuOTI1NTI5LTEuNDM0NjIgNC44Nzc3MDktMS40MzQ2MkM0Ljg0MTg0My0xLjQzNDYyIDQuODI5ODg4LTEuNDIyNjY1IDQuNzIyMjkxLTEuMzE1MDY4QzMuOTU3MTYxLS4yOTg4NzkgMi44MjE0Mi0uMTE5NTUyIDIuMzY3MTIzLS4xMTk1NTJDMS41NDIyMTctLjExOTU1MiAxLjI3OTIwMy0uODM2ODYyIDEuMjc5MjAzLTEuNDM0NjJDMS4yNzkyMDMtMS44NTMwNTEgMS40ODI0NDEtMy4wMTI3MDIgMS45MTI4MjctMy44MjU2NTRDMi4yMjM2NjEtNC4zODc1NDcgMi44NjkyNC01LjAzMzEyNiAzLjYyMjQxNi01LjAzMzEyNkMzLjc3NzgzMy01LjAzMzEyNiA0LjQzNTM2Ny01LjAwOTIxNSA0LjY3NDQ3MS00LjQ5NTE0M1onLz4KPHBhdGggaWQ9J2cxLTEwMScgZD0nTTIuMTM5OTc1LTIuNzczNTk5QzIuNDYyNzY1LTIuNzczNTk5IDMuMjc1NzE2LTIuNzk3NTA5IDMuODQ5NTY0LTMuMDEyNzAyQzQuNzU4MTU3LTMuMzU5NDAyIDQuODQxODQzLTQuMDUyODAyIDQuODQxODQzLTQuMjY3OTk1QzQuODQxODQzLTQuNzk0MDIyIDQuMzg3NTQ3LTUuMjcyMjI5IDMuNTk4NTA2LTUuMjcyMjI5QzIuMzQzMjEzLTUuMjcyMjI5IC41Mzc5ODMtNC4xMzY0ODggLjUzNzk4My0yLjAwODQ2OEMuNTM3OTgzLS43NTMxNzYgMS4yNTUyOTMgLjExOTU1MiAyLjM0MzIxMyAuMTE5NTUyQzMuOTY5MTE2IC4xMTk1NTIgNC45OTcyNi0xLjE0NzY5NiA0Ljk5NzI2LTEuMzAzMTEzQzQuOTk3MjYtMS4zNzQ4NDQgNC45MjU1MjktMS40MzQ2MiA0Ljg3NzcwOS0xLjQzNDYyQzQuODQxODQzLTEuNDM0NjIgNC44Mjk4ODgtMS40MjI2NjUgNC43MjIyOTEtMS4zMTUwNjhDMy45NTcxNjEtLjI5ODg3OSAyLjgyMTQyLS4xMTk1NTIgMi4zNjcxMjMtLjExOTU1MkMxLjY4NTY3OS0uMTE5NTUyIDEuMzI3MDI0LS42NTc1MzQgMS4zMjcwMjQtMS41NDIyMTdDMS4zMjcwMjQtMS43MDk1ODkgMS4zMjcwMjQtMi4wMDg0NjggMS41MDYzNTEtMi43NzM1OTlIMi4xMzk5NzVaTTEuNTY2MTI3LTMuMDEyNzAyQzIuMDgwMTk5LTQuODUzNzk4IDMuMjE1OTQtNS4wMzMxMjYgMy41OTg1MDYtNS4wMzMxMjZDNC4xMjQ1MzMtNS4wMzMxMjYgNC40ODMxODgtNC43MjIyOTEgNC40ODMxODgtNC4yNjc5OTVDNC40ODMxODgtMy4wMTI3MDIgMi41NzAzNjEtMy4wMTI3MDIgMi4wNjgyNDQtMy4wMTI3MDJIMS41NjYxMjdaJy8+CjxwYXRoIGlkPSdnMS0xMTAnIGQ9J00yLjQ2Mjc2NS0zLjUwMjg2NEMyLjQ4NjY3NS0zLjU3NDU5NSAyLjc4NTU1NC00LjE3MjM1NCAzLjIyNzg5NS00LjU1NDkxOUMzLjUzODczLTQuODQxODQzIDMuOTQ1MjA1LTUuMDMzMTI2IDQuNDExNDU3LTUuMDMzMTI2QzQuODg5NjY0LTUuMDMzMTI2IDUuMDU3MDM2LTQuNjc0NDcxIDUuMDU3MDM2LTQuMTk2MjY0QzUuMDU3MDM2LTMuNTE0ODE5IDQuNTY2ODc0LTIuMTUxOTMgNC4zMjc3NzEtMS41MDYzNTFDNC4yMjAxNzQtMS4yMTk0MjcgNC4xNjAzOTktMS4wNjQwMSA0LjE2MDM5OS0uODQ4ODE3QzQuMTYwMzk5LS4zMTA4MzQgNC41MzEwMDkgLjExOTU1MiA1LjEwNDg1NyAuMTE5NTUyQzYuMjE2Njg3IC4xMTk1NTIgNi42MzUxMTgtMS42Mzc4NTggNi42MzUxMTgtMS43MDk1ODlDNi42MzUxMTgtMS43NjkzNjUgNi41ODcyOTgtMS44MTcxODYgNi41MTU1NjctMS44MTcxODZDNi40MDc5Ny0xLjgxNzE4NiA2LjM5NjAxNS0xLjc4MTMyIDYuMzM2MjM5LTEuNTc4MDgyQzYuMDYxMjctLjU5Nzc1OCA1LjYwNjk3NC0uMTE5NTUyIDUuMTQwNzIyLS4xMTk1NTJDNS4wMjExNzEtLjExOTU1MiA0LjgyOTg4OC0uMTMxNTA3IDQuODI5ODg4LS41MTQwNzJDNC44Mjk4ODgtLjgxMjk1MSA0Ljk2MTM5NS0xLjE3MTYwNiA1LjAzMzEyNi0xLjMzODk3OUM1LjI3MjIyOS0xLjk5NjUxMyA1Ljc3NDM0Ni0zLjMzNTQ5MiA1Ljc3NDM0Ni00LjAxNjkzNkM1Ljc3NDM0Ni00LjczNDI0NyA1LjM1NTkxNS01LjI3MjIyOSA0LjQ0NzMyMy01LjI3MjIyOUMzLjM4MzMxMy01LjI3MjIyOSAyLjgyMTQyLTQuNTE5MDU0IDIuNjA2MjI3LTQuMjIwMTc0QzIuNTcwMzYxLTQuOTAxNjE5IDIuMDgwMTk5LTUuMjcyMjI5IDEuNTU0MTcyLTUuMjcyMjI5QzEuMTcxNjA2LTUuMjcyMjI5IC45MDg1OTMtNS4wNDUwODEgLjcwNTM1NS00LjYzODYwNUMuNDkwMTYyLTQuMjA4MjE5IC4zMjI3OS0zLjQ5MDkwOSAuMzIyNzktMy40NDMwODhTLjM3MDYxLTMuMzM1NDkyIC40NTQyOTYtMy4zMzU0OTJDLjU0OTkzOC0zLjMzNTQ5MiAuNTYxODkzLTMuMzQ3NDQ3IC42MzM2MjQtMy42MjI0MTZDLjgyNDkwNy00LjM1MTY4MSAxLjA0MDEtNS4wMzMxMjYgMS41MTgzMDYtNS4wMzMxMjZDMS43OTMyNzUtNS4wMzMxMjYgMS44ODg5MTctNC44NDE4NDMgMS44ODg5MTctNC40ODMxODhDMS44ODg5MTctNC4yMjAxNzQgMS43NjkzNjUtMy43NTM5MjMgMS42ODU2NzktMy4zODMzMTNMMS4zNTA5MzQtMi4wOTIxNTRDMS4zMDMxMTMtMS44NjUwMDYgMS4xNzE2MDYtMS4zMjcwMjQgMS4xMTE4MzEtMS4xMTE4MzFDMS4wMjgxNDQtLjgwMDk5NiAuODk2NjM4LS4yMzkxMDMgLjg5NjYzOC0uMTc5MzI4Qy44OTY2MzgtLjAxMTk1NSAxLjAyODE0NCAuMTE5NTUyIDEuMjA3NDcyIC4xMTk1NTJDMS4zNTA5MzQgLjExOTU1MiAxLjUxODMwNiAuMDQ3ODIxIDEuNjEzOTQ4LS4xMzE1MDdDMS42Mzc4NTgtLjE5MTI4MyAxLjc0NTQ1NS0uNjA5NzE0IDEuODA1MjMtLjg0ODgxN0wyLjA2ODI0NC0xLjkyNDc4MkwyLjQ2Mjc2NS0zLjUwMjg2NFonLz4KPHBhdGggaWQ9J2cxLTExMScgZD0nTTUuNDUxNTU3LTMuMjg3NjcxQzUuNDUxNTU3LTQuNDIzNDEyIDQuNzEwMzM2LTUuMjcyMjI5IDMuNjIyNDE2LTUuMjcyMjI5QzIuMDQ0MzM0LTUuMjcyMjI5IC40OTAxNjItMy41NTA2ODUgLjQ5MDE2Mi0xLjg2NTAwNkMuNDkwMTYyLS43MjkyNjUgMS4yMzEzODIgLjExOTU1MiAyLjMxOTMwMyAuMTE5NTUyQzMuOTA5MzQgLjExOTU1MiA1LjQ1MTU1Ny0xLjYwMTk5MyA1LjQ1MTU1Ny0zLjI4NzY3MVpNMi4zMzEyNTgtLjExOTU1MkMxLjczMzQ5OS0uMTE5NTUyIDEuMjkxMTU4LS41OTc3NTggMS4yOTExNTgtMS40MzQ2MkMxLjI5MTE1OC0xLjk4NDU1OCAxLjU3ODA4Mi0zLjIwMzk4NSAxLjkxMjgyNy0zLjgwMTc0M0MyLjQ1MDgwOS00LjcyMjI5MSAzLjEyMDI5OS01LjAzMzEyNiAzLjYxMDQ2MS01LjAzMzEyNkM0LjE5NjI2NC01LjAzMzEyNiA0LjY1MDU2LTQuNTU0OTE5IDQuNjUwNTYtMy43MTgwNTdDNC42NTA1Ni0zLjIzOTg1MSA0LjM5OTUwMi0xLjk2MDY0OCAzLjk0NTIwNS0xLjIzMTM4MkMzLjQ1NTA0NC0uNDMwMzg2IDIuNzk3NTA5LS4xMTk1NTIgMi4zMzEyNTgtLjExOTU1MlonLz4KPHBhdGggaWQ9J2cxLTExNScgZD0nTTIuNzI1Nzc4LTIuMzkxMDM0QzIuOTI5MDE2LTIuMzU1MTY4IDMuMjUxODA2LTIuMjgzNDM3IDMuMzIzNTM3LTIuMjcxNDgyQzMuNDc4OTU0LTIuMjIzNjYxIDQuMDE2OTM2LTIuMDMyMzc5IDQuMDE2OTM2LTEuNDU4NTMxQzQuMDE2OTM2LTEuMDg3OTIgMy42ODIxOTItLjExOTU1MiAyLjI5NTM5Mi0uMTE5NTUyQzIuMDQ0MzM0LS4xMTk1NTIgMS4xNDc2OTYtLjE1NTQxNyAuOTA4NTkzLS44MTI5NTFDMS4zODY4LS43NTMxNzYgMS42MjU5MDMtMS4xMjM3ODYgMS42MjU5MDMtMS4zODY4QzEuNjI1OTAzLTEuNjM3ODU4IDEuNDU4NTMxLTEuNzY5MzY1IDEuMjE5NDI3LTEuNzY5MzY1Qy45NTY0MTMtMS43NjkzNjUgLjYwOTcxNC0xLjU2NjEyNyAuNjA5NzE0LTEuMDI4MTQ0Qy42MDk3MTQtLjMyMjc5IDEuMzI3MDI0IC4xMTk1NTIgMi4yODM0MzcgLjExOTU1MkM0LjEwMDYyMyAuMTE5NTUyIDQuNjM4NjA1LTEuMjE5NDI3IDQuNjM4NjA1LTEuODQxMDk2QzQuNjM4NjA1LTIuMDIwNDIzIDQuNjM4NjA1LTIuMzU1MTY4IDQuMjU2MDQtMi43Mzc3MzNDMy45NTcxNjEtMy4wMjQ2NTggMy42NzAyMzctMy4wODQ0MzMgMy4wMjQ2NTgtMy4yMTU5NEMyLjcwMTg2OC0zLjI4NzY3MSAyLjE4Nzc5Ni0zLjM5NTI2OCAyLjE4Nzc5Ni0zLjkzMzI1QzIuMTg3Nzk2LTQuMTcyMzU0IDIuNDAyOTg5LTUuMDMzMTI2IDMuNTM4NzMtNS4wMzMxMjZDNC4wNDA4NDctNS4wMzMxMjYgNC41MzEwMDktNC44NDE4NDMgNC42NTA1Ni00LjQxMTQ1N0M0LjEyNDUzMy00LjQxMTQ1NyA0LjEwMDYyMy0zLjk1NzE2MSA0LjEwMDYyMy0zLjk0NTIwNUM0LjEwMDYyMy0zLjY5NDE0NyA0LjMyNzc3MS0zLjYyMjQxNiA0LjQzNTM2Ny0zLjYyMjQxNkM0LjYwMjc0LTMuNjIyNDE2IDQuOTM3NDg0LTMuNzUzOTIzIDQuOTM3NDg0LTQuMjU2MDRTNC40ODMxODgtNS4yNzIyMjkgMy41NTA2ODUtNS4yNzIyMjlDMS45ODQ1NTgtNS4yNzIyMjkgMS41NjYxMjctNC4wNDA4NDcgMS41NjYxMjctMy41NTA2ODVDMS41NjYxMjctMi42NDIwOTIgMi40NTA4MDktMi40NTA4MDkgMi43MjU3NzgtMi4zOTEwMzRaJy8+CjxwYXRoIGlkPSdnMS0xMjAnIGQ9J001LjY2Njc1LTQuODc3NzA5QzUuMjg0MTg0LTQuODA1OTc4IDUuMTQwNzIyLTQuNTE5MDU0IDUuMTQwNzIyLTQuMjkxOTA1QzUuMTQwNzIyLTQuMDA0OTgxIDUuMzY3ODctMy45MDkzNCA1LjUzNTI0My0zLjkwOTM0QzUuODkzODk4LTMuOTA5MzQgNi4xNDQ5NTYtNC4yMjAxNzQgNi4xNDQ5NTYtNC41NDI5NjRDNi4xNDQ5NTYtNS4wNDUwODEgNS41NzExMDgtNS4yNzIyMjkgNS4wNjg5OTEtNS4yNzIyMjlDNC4zMzk3MjYtNS4yNzIyMjkgMy45MzMyNS00LjU1NDkxOSAzLjgyNTY1NC00LjMyNzc3MUMzLjU1MDY4NS01LjIyNDQwOCAyLjgwOTQ2NS01LjI3MjIyOSAyLjU5NDI3MS01LjI3MjIyOUMxLjM3NDg0NC01LjI3MjIyOSAuNzI5MjY1LTMuNzA2MTAyIC43MjkyNjUtMy40NDMwODhDLjcyOTI2NS0zLjM5NTI2OCAuNzc3MDg2LTMuMzM1NDkyIC44NjA3NzItMy4zMzU0OTJDLjk1NjQxMy0zLjMzNTQ5MiAuOTgwMzI0LTMuNDA3MjIzIDEuMDA0MjM0LTMuNDU1MDQ0QzEuNDEwNzEtNC43ODIwNjcgMi4yMTE3MDYtNS4wMzMxMjYgMi41NTg0MDYtNS4wMzMxMjZDMy4wOTYzODktNS4wMzMxMjYgMy4yMDM5ODUtNC41MzEwMDkgMy4yMDM5ODUtNC4yNDQwODVDMy4yMDM5ODUtMy45ODEwNzEgMy4xMzIyNTQtMy43MDYxMDIgMi45ODg3OTItMy4xMzIyNTRMMi41ODIzMTYtMS40OTQzOTZDMi40MDI5ODktLjc3NzA4NiAyLjA1NjI4OS0uMTE5NTUyIDEuNDIyNjY1LS4xMTk1NTJDMS4zNjI4ODktLjExOTU1MiAxLjA2NDAxLS4xMTk1NTIgLjgxMjk1MS0uMjc0OTY5QzEuMjQzMzM3LS4zNTg2NTUgMS4zMzg5NzktLjcxNzMxIDEuMzM4OTc5LS44NjA3NzJDMS4zMzg5NzktMS4wOTk4NzUgMS4xNTk2NTEtMS4yNDMzMzcgLjkzMjUwMy0xLjI0MzMzN0MuNjQ1NTc5LTEuMjQzMzM3IC4zMzQ3NDUtLjk5MjI3OSAuMzM0NzQ1LS42MDk3MTRDLjMzNDc0NS0uMTA3NTk3IC44OTY2MzggLjExOTU1MiAxLjQxMDcxIC4xMTk1NTJDMS45ODQ1NTggLjExOTU1MiAyLjM5MTAzNC0uMzM0NzQ1IDIuNjQyMDkyLS44MjQ5MDdDMi44MzMzNzUtLjExOTU1MiAzLjQzMTEzMyAuMTE5NTUyIDMuODczNDc0IC4xMTk1NTJDNS4wOTI5MDIgLjExOTU1MiA1LjczODQ4MS0xLjQ0NjU3NSA1LjczODQ4MS0xLjcwOTU4OUM1LjczODQ4MS0xLjc2OTM2NSA1LjY5MDY2LTEuODE3MTg2IDUuNjE4OTI5LTEuODE3MTg2QzUuNTExMzMzLTEuODE3MTg2IDUuNDk5Mzc3LTEuNzU3NDEgNS40NjM1MTItMS42NjE3NjhDNS4xNDA3MjItLjYwOTcxNCA0LjQ0NzMyMy0uMTE5NTUyIDMuOTA5MzQtLjExOTU1MkMzLjQ5MDkwOS0uMTE5NTUyIDMuMjYzNzYxLS40MzAzODYgMy4yNjM3NjEtLjkyMDU0OEMzLjI2Mzc2MS0xLjE4MzU2MiAzLjMxMTU4Mi0xLjM3NDg0NCAzLjUwMjg2NC0yLjE2Mzg4NUwzLjkyMTI5NS0zLjc4OTc4OEM0LjEwMDYyMy00LjUwNzA5OCA0LjUwNzA5OC01LjAzMzEyNiA1LjA1NzAzNi01LjAzMzEyNkM1LjA4MDk0Ni01LjAzMzEyNiA1LjQxNTY5MS01LjAzMzEyNiA1LjY2Njc1LTQuODc3NzA5WicvPgo8L2RlZnM+CjxnIGlkPSdwYWdlMScgdHJhbnNmb3JtPSdtYXRyaXgoMS4xMyAwIDAgMS4xMyAtNjMuOTg2MDQzIC02MC43NDEyNTQpJz4KPHVzZSB4PSc1Ni40MTMyNjcnIHk9JzY5LjU5MDQ0NicgeGxpbms6aHJlZj0nI2cxLTExNScvPgo8dXNlIHg9JzYxLjkyNzI3MycgeT0nNjkuNTkwNDQ2JyB4bGluazpocmVmPScjZzEtMTAxJy8+Cjx1c2UgeD0nNjcuMzUyNzEzJyB5PSc2OS41OTA0NDYnIHhsaW5rOmhyZWY9JyNnMS0xMTAnLz4KPHVzZSB4PSc3NC4zNDAzMTknIHk9JzY5LjU5MDQ0NicgeGxpbms6aHJlZj0nI2cyLTQwJy8+Cjx1c2UgeD0nNzguODkyNjQ0JyB5PSc2OS41OTA0NDYnIHhsaW5rOmhyZWY9JyNnMi01NScvPgo8dXNlIHg9Jzg0Ljc0NTYzNScgeT0nNjkuNTkwNDQ2JyB4bGluazpocmVmPScjZzEtMTIwJy8+Cjx1c2UgeD0nOTEuMzk3NzIyJyB5PSc2OS41OTA0NDYnIHhsaW5rOmhyZWY9JyNnMi00MScvPgo8dXNlIHg9Jzk5LjI3MDg3NycgeT0nNjkuNTkwNDQ2JyB4bGluazpocmVmPScjZzItNjEnLz4KPHVzZSB4PScxMTEuNjk2MzU4JyB5PSc2OS41OTA0NDYnIHhsaW5rOmhyZWY9JyNnMS05OScvPgo8dXNlIHg9JzExNi43MzQzNDYnIHk9JzY5LjU5MDQ0NicgeGxpbms6aHJlZj0nI2cxLTExMScvPgo8dXNlIHg9JzEyMi4zNjE3ODQnIHk9JzY5LjU5MDQ0NicgeGxpbms6aHJlZj0nI2cxLTExNScvPgo8dXNlIHg9JzEyNy44NzU3OScgeT0nNjkuNTkwNDQ2JyB4bGluazpocmVmPScjZzItNDAnLz4KPHVzZSB4PScxMzIuNDI4MTE1JyB5PSc2OS41OTA0NDYnIHhsaW5rOmhyZWY9JyNnMi01MCcvPgo8dXNlIHg9JzEzOC4yODExMDYnIHk9JzY5LjU5MDQ0NicgeGxpbms6aHJlZj0nI2cxLTEyMCcvPgo8dXNlIHg9JzE0Ny41ODk4NTYnIHk9JzY5LjU5MDQ0NicgeGxpbms6aHJlZj0nI2cwLTAnLz4KPHVzZSB4PScxNjAuNzQwNTMxJyB5PSc2MS41MDI2ODcnIHhsaW5rOmhyZWY9JyNnMi01MScvPgo8dXNlIHg9JzE2Ni41OTM1MjEnIHk9JzYxLjUwMjY4NycgeGxpbms6aHJlZj0nI2cxLTI1Jy8+CjxyZWN0IHg9JzE2MC43NDA1MzEnIHk9JzY2LjM2MjU2JyBoZWlnaHQ9Jy40NzgxODcnIHdpZHRoPScxMi45MjIyNicvPgo8dXNlIHg9JzE2NC4yNzUxNzMnIHk9Jzc3Ljc5MTEwOCcgeGxpbms6aHJlZj0nI2cyLTUyJy8+Cjx1c2UgeD0nMTc0Ljg1ODMwNCcgeT0nNjkuNTkwNDQ2JyB4bGluazpocmVmPScjZzItNDEnLz4KPC9nPgo8L3N2Zz4=

Resp.: Sem gabarito

Tipo, quando o seno de um ângulo e seu cosseno são iguais, só tem duas opções: ou o ângulo é 45º ou é 225º
Então tipo, 7x = π/4 + (alguma coisa) e 7x = 5π/4 + (alguma coisa)

A minha dúvida é que eu n estou conseguindo relacionar esse (alguma coisa) com o cosseno dado na expressão...


Última edição por Betoneira de Natal em Dom 13 Mar 2022, 10:38, editado 1 vez(es)
Betoneira de Natal
Betoneira de Natal
Padawan
Padawan

Mensagens : 57
Data de inscrição : 02/03/2022
Localização : Brasil

Ir para o topo Ir para baixo

Resolvido Re: Igualdade Trigonométrica.

Mensagem por Giovana Martins Dom 13 Mar 2022, 09:23

Se você não entender algo, avise.

[latex]\\\mathrm{Identidade\ trigonom\acute{e}trica:sin(\alpha -\beta )=sin(\alpha )cos(\beta )-sin(\beta )cos(\alpha )}\\\\\mathrm{Logo,cos(y)=sin\left ( \frac{\pi}{2} \right )cos(y)-sin(y)cos\left ( \frac{\pi }{2} \right )=sin\left ( \frac{\pi }{2}-y \right )}\\\\\mathrm{Seja\ y=2x-\frac{3\pi }{4},logo,sin(7x)=cos\left ( 2x-\frac{3\pi }{4} \right )=cos(y)=sin\left ( \frac{\pi }{2}-y \right )}\\\\\mathrm{\acute{E}\ sabido\ que:sin(m)=sin(n)\to S=\left \{ m\in\mathbb{R}\ |\ m=n+2k\pi\ \vee\ m=\pi -n+2k\pi,k\in\mathbb{Z} \right \}}\\\\\mathrm{\therefore sin(7x)=sin\left ( \frac{\pi }{2}-y \right )\to \left\{\begin{matrix} \mathrm{7x=\frac{\pi }{2}-y+2k\pi,k\in \mathbb{Z}}\\ \mathrm{7x=\pi -\frac{\pi }{2}+y+2k\pi,k\in \mathbb{Z}} \end{matrix}\right.=\left\{\begin{matrix} \mathrm{x=\frac{5\pi +8k\pi}{36},k\in \mathbb{Z}}\\ \mathrm{x=\frac{-\pi +8k\pi }{20},k\in \mathbb{Z}} \end{matrix}\right.}[/latex]

____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins
Giovana Martins
Grande Mestre
Grande Mestre

Mensagens : 8563
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo

Betoneira de Natal gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Igualdade Trigonométrica.

Mensagem por Giovana Martins Dom 13 Mar 2022, 09:25

A propósito, esta postagem se enquadra melhor na seção de trigonometria. Irei mudar a postagem de seção.

____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins
Giovana Martins
Grande Mestre
Grande Mestre

Mensagens : 8563
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo

Betoneira de Natal gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Igualdade Trigonométrica.

Mensagem por Betoneira de Natal Dom 13 Mar 2022, 09:49

Olá Gi! Bom dia!

Então, n entendi a sua segunda linha
Pq colocar como sen(π/2) e cos(π/2) ?

E vc acha recorrente decorar essa identidade?
Creio que os outros passos sejam mais simples de serem vistos, estava muito em dúvida sobre como manipular aqueles arcos dados

E perdão por postar a questão na área errada do fórum, achei que pudesse ser mais algebra do q trigonometria propriamente dito.
Betoneira de Natal
Betoneira de Natal
Padawan
Padawan

Mensagens : 57
Data de inscrição : 02/03/2022
Localização : Brasil

Giovana Martins gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Igualdade Trigonométrica.

Mensagem por Giovana Martins Dom 13 Mar 2022, 10:10

Olá, Betoneira. Belo nick kkkkkk! Adoro piadas desse tipo kkkkk.

É sabido que as equações sin(m)=sin(n), cos(m)=cos(n) e tan(m)=tan(n) possuem soluções padrão. Então, ao resolver uma equação trigonométrica o nosso objetivo é reduzir as nossas equações a sin(m)=sin(n), cos(m)=cos(n), tan(m)=tan(n).

A minha ideia é transformar cosseno em seno, porque neste caso eu vou cair em uma equação do tipo sin(m)=sin(n) e para equações deste tipo nós já temos a solução padrão tal como eu indiquei na minha resolução. Mas como eu faço para transformar cosseno em seno?

De cabeça eu sei que cos(y)=sin(90°-y), porém, para que a resolução não ficasse muito sucinta/direta, eu optei por explicitar como eu cheguei na igualdade cos(y)=sin(90°-y) e para isso temos de partir da identidade trigonométrica sin(x-y)=sin(x)cos(y)-sin(y)cos(x).

Note que se eu fizer x=90°, sin(x)=1 e cos(x)=0, logo, sin(90°-y)=1.cos(y)-0.sin(y)=cos(y).

Quanto a memorização da identidade trigonométrica que eu utilizei, sim, é fundamental que você a memorize (ou então aprenda a demonstrar), pois ela é bastante cobrada nos vestibulares.

Há algumas musiquinhas ou frases mnemônicas dessas identidades trigonométricas justamente para facilitar a memorização das mesmas. Dê uma procurada na internet caso você tenha problema para memorizar essas identidades.

____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins
Giovana Martins
Grande Mestre
Grande Mestre

Mensagens : 8563
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo

Betoneira de Natal gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Igualdade Trigonométrica.

Mensagem por Betoneira de Natal Dom 13 Mar 2022, 10:38

"Está passando na sua tela a Betoneira de Natal
Que seus sonhos se concretizem!"

kkkkkkkk

Entendi, ela parece ser realmente importante!
Obrigado Gi!
Betoneira de Natal
Betoneira de Natal
Padawan
Padawan

Mensagens : 57
Data de inscrição : 02/03/2022
Localização : Brasil

Giovana Martins gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Igualdade Trigonométrica.

Mensagem por Giovana Martins Dom 13 Mar 2022, 10:46

Disponha!

____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins
Giovana Martins
Grande Mestre
Grande Mestre

Mensagens : 8563
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo

Betoneira de Natal gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Igualdade Trigonométrica.

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos