Por que i^4/1/pi)^4?pi tem resultado diferente de i^(1/
3 participantes
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Por que i^4/1/pi)^4?pi tem resultado diferente de i^(1/
Segundo os cálculos os valores para estes manipulados dá diferente
[latex]i^{\frac{4}{\pi }}\neq (i^{\frac{1}{\pi }})^{4}[/latex]
[latex]i^{\frac{4}{\pi }}\neq (i^{\frac{1}{\pi }})^{4}[/latex]
Zeis- Mestre Jedi
- Mensagens : 530
Data de inscrição : 16/03/2020
Re: Por que i^4/1/pi)^4?pi tem resultado diferente de i^(1/
Isto faz parte de alguma questão? Se fizer, poste o enunciado da questão.
i4/pi = (i4)1/pi = 11/pi = 1
Mas o outro também está correto: i4/pi = (i1/pi)4 ---> Só que não leva a nada.
i4/pi = (i4)1/pi = 11/pi = 1
Mas o outro também está correto: i4/pi = (i1/pi)4 ---> Só que não leva a nada.
Elcioschin- Grande Mestre
- Mensagens : 73182
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP
Re: Por que i^4/1/pi)^4?pi tem resultado diferente de i^(1/
Esse problema está relacionado com o mesmo que diz que
1^1/4 = 1 , 1^1/4 = i
i = 1
Basicamente, as definições de raiz são bem estranhas. Ao mesmo tempo que a gente fala que i é raiz de 1^1/4 , a definição de raiz quarta nos obriga a ter um resultado positivo e real.
Então a ordem com que a gente faz as operações acaba por nos dar resultados diferentes
Se a gente fizer (i^4)^1/pi , a gente tem 1^1/pi = 1
Se a gente inverter a ordem da operação: i^1/pi = e^i/2 segundo o wolfram (se alguém puder clarificar como ele chegou nisso, pela fórmula de Euler, eu agradeço)
(e^i/2)^4 = e^2i, que é claramente diferente de 1
O blackpenredpen fez um vídeo sobre questões de i^(4/4), que eu achei excelente:
https://www.youtube.com/watch?v=awrgXX0Qnjs&
1^1/4 = 1 , 1^1/4 = i
i = 1
Basicamente, as definições de raiz são bem estranhas. Ao mesmo tempo que a gente fala que i é raiz de 1^1/4 , a definição de raiz quarta nos obriga a ter um resultado positivo e real.
Então a ordem com que a gente faz as operações acaba por nos dar resultados diferentes
Se a gente fizer (i^4)^1/pi , a gente tem 1^1/pi = 1
Se a gente inverter a ordem da operação: i^1/pi = e^i/2 segundo o wolfram (se alguém puder clarificar como ele chegou nisso, pela fórmula de Euler, eu agradeço)
(e^i/2)^4 = e^2i, que é claramente diferente de 1
O blackpenredpen fez um vídeo sobre questões de i^(4/4), que eu achei excelente:
https://www.youtube.com/watch?v=awrgXX0Qnjs&
Marcim- Padawan
- Mensagens : 50
Data de inscrição : 20/01/2021
Idade : 20
Localização : Goiânia, Goiás, Brasil
Tópicos semelhantes
» Derivada da mesma função->Resultado diferente
» SENDO AB DIFERENTE DE 0 E A +B DIFERENTE DE 0
» Progressão Geométrica
» Delta H diferente de Zero
» Potenciaçao diferente
» SENDO AB DIFERENTE DE 0 E A +B DIFERENTE DE 0
» Progressão Geométrica
» Delta H diferente de Zero
» Potenciaçao diferente
PiR2 :: Matemática :: Álgebra
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos