DESAFIO - Altura e área em função de H e L
4 participantes
PiR2 :: Matemática :: Trigonometria
Página 1 de 1
DESAFIO - Altura e área em função de H e L
Questão da FUVEST 2014 da Faculdade de São Carlos em para específica em Arquitetura
Um dos novos edifícios do complexo World Trade Center em Nova Iorque, concebido por David Childs para substituir as Torres Gêmeas, foi construído tendo como base um quadrado de lado L e tendo como cobertura outro quadrado, concêntrico com a base, rotacionado 45 graus. Suas diagonais,portanto,também medem L. A figura 1 mostra uma vistado edifício e a figura 2 mostra um esquema de sua vista superior.
As paredes laterais do edifício são oito triângulos isósceles. Quatro desses triângulos têm como base as arestas do quadrado base e um vértice do quadrado cobertura. Esses quatro triângulos são perpendiculares à base. Os outros quatro triângulos têm como base as arestas do quadrado cobertura e um vértice no quadrado base e são ligeiramente inclinados em relação à base.
Os primeiros quatro triângulos descritos têm as seguintes ternas de vértices:
B4 T1 B1, B1 T2 B2, B2 T3 B3 e B3 T4 B4.
Os outros quatro triângulos descritos têm as seguintes ternas de vértices:
T1 B1 T2, T2 B2 T3, T3 B3 T4 e T4 B4 T1
Sabendo-se que os primeiros quatro triângulos têm altura H, obtenha a altura dos outros quatro triângulos e calcule a área lateral do edifício em função de H e L.
______
Minha resposta:
Altura dos outros triângulos: √(H²+L²/
Área da superfície lateral do edifício: 4.L.H/2 + 8.L.√(H²+L²//√2
Um dos novos edifícios do complexo World Trade Center em Nova Iorque, concebido por David Childs para substituir as Torres Gêmeas, foi construído tendo como base um quadrado de lado L e tendo como cobertura outro quadrado, concêntrico com a base, rotacionado 45 graus. Suas diagonais,portanto,também medem L. A figura 1 mostra uma vistado edifício e a figura 2 mostra um esquema de sua vista superior.
As paredes laterais do edifício são oito triângulos isósceles. Quatro desses triângulos têm como base as arestas do quadrado base e um vértice do quadrado cobertura. Esses quatro triângulos são perpendiculares à base. Os outros quatro triângulos têm como base as arestas do quadrado cobertura e um vértice no quadrado base e são ligeiramente inclinados em relação à base.
Os primeiros quatro triângulos descritos têm as seguintes ternas de vértices:
B4 T1 B1, B1 T2 B2, B2 T3 B3 e B3 T4 B4.
Os outros quatro triângulos descritos têm as seguintes ternas de vértices:
T1 B1 T2, T2 B2 T3, T3 B3 T4 e T4 B4 T1
Sabendo-se que os primeiros quatro triângulos têm altura H, obtenha a altura dos outros quatro triângulos e calcule a área lateral do edifício em função de H e L.
______
Minha resposta:
Altura dos outros triângulos: √(H²+L²/
Área da superfície lateral do edifício: 4.L.H/2 + 8.L.√(H²+L²//√2
Última edição por Erica Bortoletto em Qua 06 maio 2020, 00:18, editado 2 vez(es)
Erica Bortoletto- Iniciante
- Mensagens : 4
Data de inscrição : 05/05/2020
Re: DESAFIO - Altura e área em função de H e L
Pelas regras do fórum o enunciado deve ser digitado. Por favor, leia as regras.
Regras: https://pir2.forumeiros.com/Regulamentos-h26.htm
Regras: https://pir2.forumeiros.com/Regulamentos-h26.htm
____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins- Grande Mestre
- Mensagens : 8544
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo
Re: DESAFIO - Altura e área em função de H e L
Obrigada! Eu não sabia. Alterei!Giovana Martins escreveu:Pelas regras do fórum o enunciado deve ser digitado. Por favor, leia as regras.
Regras: https://pir2.forumeiros.com/Regulamentos-h26.htm
Erica Bortoletto- Iniciante
- Mensagens : 4
Data de inscrição : 05/05/2020
Re: DESAFIO - Altura e área em função de H e L
Eu que agradeço .
____________________________________________
Charlotte de Witte - Universal Nation
Giovana Martins- Grande Mestre
- Mensagens : 8544
Data de inscrição : 15/05/2015
Idade : 24
Localização : São Paulo
Re: DESAFIO - Altura e área em função de H e L
Erica
Você postou a mesma questão às 10:36 do dia 05/05
https://pir2.forumeiros.com/t168747-fuvest-2014-altura-e-area-em-funcao-de-h-e-l
A questão foi bloqueada pelo fato de não respeitar a Regra IX
Às 11:30 do mesmo dia você postou novamente, com o mesmo erro.
Neste caso você cometeu dois erros: não digitou a questão e postou em duplicidade.
Por favor leia todas as Regras do fórum e siga-as nas próximas postagens.
Você postou a mesma questão às 10:36 do dia 05/05
https://pir2.forumeiros.com/t168747-fuvest-2014-altura-e-area-em-funcao-de-h-e-l
A questão foi bloqueada pelo fato de não respeitar a Regra IX
Às 11:30 do mesmo dia você postou novamente, com o mesmo erro.
Neste caso você cometeu dois erros: não digitou a questão e postou em duplicidade.
Por favor leia todas as Regras do fórum e siga-as nas próximas postagens.
Elcioschin- Grande Mestre
- Mensagens : 73174
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP
Medeiros- Grupo
Velhos amigos do Fórum - Mensagens : 10547
Data de inscrição : 01/09/2009
Idade : 72
Localização : Santos, SP, BR
Erica Bortoletto- Iniciante
- Mensagens : 4
Data de inscrição : 05/05/2020
Re: DESAFIO - Altura e área em função de H e L
Por exemplo:
se vc tem √2 no denominador, para tira-la multiplique o denominador e numerador por √2.
No denominador vai ficar √2.√2 = 2.
No numerador vai ficar a √2.
se vc tem √2 no denominador, para tira-la multiplique o denominador e numerador por √2.
No denominador vai ficar √2.√2 = 2.
No numerador vai ficar a √2.
Medeiros- Grupo
Velhos amigos do Fórum - Mensagens : 10547
Data de inscrição : 01/09/2009
Idade : 72
Localização : Santos, SP, BR
Tópicos semelhantes
» FUVEST 2014 - Altura e área em função de H e L
» Desafio Matemática - Área Triângulo
» Angulos, area e altura de triangulo
» Área da superfície do cone de altura h.
» Geometria Plana - Altura - Área - Paralelogra
» Desafio Matemática - Área Triângulo
» Angulos, area e altura de triangulo
» Área da superfície do cone de altura h.
» Geometria Plana - Altura - Área - Paralelogra
PiR2 :: Matemática :: Trigonometria
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos