PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Máximo e mínimo de função trigonométrica

2 participantes

Ir para baixo

Máximo e mínimo de função trigonométrica Empty Máximo e mínimo de função trigonométrica

Mensagem por Huygens Ter 14 Jun 2016, 19:23

Quando x + y = 2π/3 , x≥ 0, y≥0, o máximo e o mínimo de sen(x) + sen(y) é?



Resp.:  
máximo: √3   
mínimo: √3/2
Huygens
Huygens
Iniciante

Mensagens : 28
Data de inscrição : 31/10/2014
Idade : 27
Localização : brasília

Ir para o topo Ir para baixo

Máximo e mínimo de função trigonométrica Empty Re: Máximo e mínimo de função trigonométrica

Mensagem por Elcioschin Ter 14 Jun 2016, 22:39

a) O máximo ocorre quando ambas são iguais

x = y = pi/3 ---> sen(pi/3) + sen(pi/3) = √3/2 + √3/2 = √3


b) O mínimo ocorre quando uma delas é nula ---> x = 0 (ou y = 0)

Para x = 0 ---> y = 2.pi/3 ---> sen0 + sen(2.pi/3) = 0 + √3/2 = √3/2

Pode-se provar isto facilmente usando Prostaférese. Tentem!
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73182
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Máximo e mínimo de função trigonométrica Empty Re: Máximo e mínimo de função trigonométrica

Mensagem por Huygens Ter 14 Jun 2016, 23:48

O senhor poderia me explicar porque para ser máximo e mínimo tem que ocorrer essas duas condições? Eu pensei nisso de forma intuitiva, mas achei que tinha sido meio que um chute. Ai tentei por prostaférese, mas não deu certo.
Huygens
Huygens
Iniciante

Mensagens : 28
Data de inscrição : 31/10/2014
Idade : 27
Localização : brasília

Ir para o topo Ir para baixo

Máximo e mínimo de função trigonométrica Empty Re: Máximo e mínimo de função trigonométrica

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos