PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Questãozinha

2 participantes

Ir para baixo

Questãozinha  Empty Questãozinha

Mensagem por VictorCoe Sex 07 Mar 2014, 02:17

Se  . Determine 





Se
Questãozinha  %5CLARGE%5C!D%3D%5Ctan%5Cleft(%5Cfrac%7B%5Cpi%20%7D%7B7%7D%5Cright)%5Ctan%5Cleft(%5Cfrac%7B2%5Cpi%20%7D%7B7%7D%5Cright)%5Ctan%5Cleft(%5Cfrac%7B3%5Cpi%20%7D%7B7%7D%5Cright)

Determine
Questãozinha  %5CLARGE%5C!D%5Csqrt%7B7%7D


Última edição por Euclides em Sex 07 Mar 2014, 02:30, editado 1 vez(es) (Motivo da edição : Problemas no servidor Codecogs)
VictorCoe
VictorCoe
Fera
Fera

Mensagens : 530
Data de inscrição : 20/02/2012
Idade : 27
Localização : Fortaleza/Ceará

Ir para o topo Ir para baixo

Questãozinha  Empty Re: Questãozinha

Mensagem por PedroCunha Sex 07 Mar 2014, 02:59

Uma maneira:

Veja que 0, tan (pi/7), tan (2pi/7) ... tan (6pi/7) são as raízes da equação tan 7x = 0

Agora, vamos expandir tan 7x. Lembrando que tan 7x = sen 7x/cos 7x, vamos trabalhar.

Da primeira Lei de Moivre, (cos x + i*senx)^n = cos n*x + i*sen n*x. Fazendo n = 7 e utilizando o Binômio de Newton, chegamos em:

cos 7x + i sen 7x = cos^7 x + 7 cos^6 x * i sen x + 21 cos^5 x (i sen x)^2 + 35 cos ^4 x (i sen x)^3 + 35 cos^3 x (i sen x)^4 + 21 cos^2 x (i sen x)^5 + 7 cos x (i sen x)^6 + (i sen x)^7

que após simplificarmos e compararmos as partes reais e imaginárias, chegamos em:

cos 7x = cos^7 x - 21 cos^5 x sin^2 x + 35 cos^3 x sin^4 x - 7 cos x sin^6 x
sen 7x = 7 cos^6 x sin x - 35 cos^4 x sin^3 x + 21 cos^2 x sin^5 x - sin^7 x

Substituindo na expressão da tangente:

tan 7x = (7 cos^6 x sin x - 35 cos^4 x sin^3 x + 21 cos^2 x sin^5 x - sin^7 x)/( cos^7 x - 21 cos^5 x sin^2 x + 35 cos^3 x sin^4 x - 7 cos x sin^6 x), mas lembre-se que inicialmente tan 7x = 0, logo:

(7 cos^6 x sin x - 35 cos^4 x sin^3 x + 21 cos^2 x sin^5 x - sin^7 x) = 0

Dividindo por cos 7^x, temos:

7tanx - 35tan³x + 21tan^5x - tan^7x = 0 .:. tanx*(-tan^6x + 21tan^4x - 35tan²x + 7) = 0

Como as raízes de tan 7x = 0 eram 0, tan pi/7, tan 2pi/7 ... as raízes de
 -tan^6x + 21tan^4x - 35tan²x + 7 serão tan pi/7 , tan 2pi/7 ...

Das relações de Girard:

tan pi/7 * tan 2pi/7 * tan 3pi/7 * tan 4pi/7 * tan 5pi/7 * tan 6pi/7 = -7

Mas lembre-se de que: tan pi/7 = -tan 4pi/7, tan 2pi/7 = -tan 5pi/7 e tan 3pi/7 = -tan 6pi/7, logo, a expressão se transforma em:

-(tan pi/7 * tan 2pi/7 * tan 3pi/7)² = -7 .:. D = √7

Logo, D√7 = 7

Att.,
Pedro
PedroCunha
PedroCunha
Monitor
Monitor

Mensagens : 4639
Data de inscrição : 14/05/2013
Idade : 28
Localização : Viçosa, MG, Brasil

Ir para o topo Ir para baixo

Questãozinha  Empty Re: Questãozinha

Mensagem por VictorCoe Sex 07 Mar 2014, 23:21

GENIAL ! Parabéns !
VictorCoe
VictorCoe
Fera
Fera

Mensagens : 530
Data de inscrição : 20/02/2012
Idade : 27
Localização : Fortaleza/Ceará

Ir para o topo Ir para baixo

Questãozinha  Empty Re: Questãozinha

Mensagem por VictorCoe Sex 07 Mar 2014, 23:22

E obrigado Very Happy
VictorCoe
VictorCoe
Fera
Fera

Mensagens : 530
Data de inscrição : 20/02/2012
Idade : 27
Localização : Fortaleza/Ceará

Ir para o topo Ir para baixo

Questãozinha  Empty Re: Questãozinha

Mensagem por PedroCunha Sáb 08 Mar 2014, 00:23

Very Happy
PedroCunha
PedroCunha
Monitor
Monitor

Mensagens : 4639
Data de inscrição : 14/05/2013
Idade : 28
Localização : Viçosa, MG, Brasil

Ir para o topo Ir para baixo

Questãozinha  Empty Re: Questãozinha

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos