PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Álgebra

4 participantes

Ir para baixo

Álgebra  Empty Álgebra

Mensagem por Nassif Qua 24 Jun 2020, 18:52

Os números reais positivos a e b satisfazem a igualdade : a√(a² + 2b²) = b√(9a² - b²). um valor possível para a/b é :

(A) 5+2√5/2
(B) 5+√3/2
(C) 3+2√3/2
(D) 3+√3/2
(E) 3+√5/2
Nassif
Nassif
Jedi
Jedi

Mensagens : 249
Data de inscrição : 01/04/2020
Idade : 22
Localização : Rio de Janeiro

britsrachel e Victorrr_da_mat01000110 gostam desta mensagem

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por Elcioschin Qua 24 Jun 2020, 20:10

a.(a² + 2.b²) = b.(9.a² - b²) ---> Elevando ao quadrado:

a².(a² + 2.b²) = b².(9.a² - b²) ---> (a²)² + 2.a².b² = 9.a².b² - (b²)² ---> 

(a²)² - 7.a².b² + (b²)² = 0 ---> Dividindo por a².b²:

a²/b² - 7 + b²/a² = 0 ---> a²/b² - 7 + 1/(a²/b²) = 0 ---> *(a²/b²):

(a²/b²)² - 7.(a²/b²)  + 1 = 0  ---> Equação do 2º grau na variável a²/b²

 = (-7)² - 4.1.1 --->  = 45 --->  = 9.5 --->  = 3.5

Calcule as raízes e complete
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73181
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por Nassif Qua 24 Jun 2020, 21:03

Obrigado!

Quando for uma saída ,assim como foi nessa questão, eu posso fazer essa divisão contanto que, faça com todos os termos da expressão ?

(divisão feita por a².b²)


Última edição por Nassif em Qua 24 Jun 2020, 22:03, editado 1 vez(es)
Nassif
Nassif
Jedi
Jedi

Mensagens : 249
Data de inscrição : 01/04/2020
Idade : 22
Localização : Rio de Janeiro

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por Elcioschin Qua 24 Jun 2020, 21:56

Não foi dividido por a² + b² e sim por a².b²
Deve-se dividir toda a equação por a².b² 
Como a equação tinha 3 termos, os 3 foram divididos por a².b²
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73181
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por Nassif Qua 24 Jun 2020, 22:02

Correto, perdão escrevi errado... 
Obrigado!
Nassif
Nassif
Jedi
Jedi

Mensagens : 249
Data de inscrição : 01/04/2020
Idade : 22
Localização : Rio de Janeiro

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por MarvintheMartian Qua 24 Jun 2020, 22:06

Nassif, você sempre pode dividir uma expressão pelo valor ou pela incógnita que você quiser, desde que ela seja diferente de zero.
Repare o que acontece nessa questão se "a" ou "b" forem zero. Nesse caso, se um dos dois for zero o outro também deverá ser para a equação ser satisfeita (verifique ^^). Sendo assim, como o resultado a=b=0 não nos interessa, pois resultaria numa indeterminação para a/b, você pode dividir a expressão por a²*b², sem problemas, pois ambos são diferentes de zero.
MarvintheMartian
MarvintheMartian
Iniciante

Mensagens : 19
Data de inscrição : 15/01/2014
Idade : 32
Localização : Rio de Janeiro,RJ

Victorrr_da_mat01000110 gosta desta mensagem

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por Nassif Qua 24 Jun 2020, 22:58

MarvintheMartian escreveu:Nassif, você sempre pode dividir uma expressão pelo valor ou pela incógnita que você quiser, desde que ela seja diferente de zero.
Repare o que acontece nessa questão se "a" ou "b" forem zero. Nesse caso, se um dos dois for zero o outro também deverá ser para a equação ser satisfeita (verifique ^^). Sendo assim, como o resultado a=b=0 não nos interessa, pois resultaria numa indeterminação para a/b, você pode dividir a expressão por a²*b², sem problemas, pois ambos são diferentes de zero.
Obrigado!
Eu poderia fazer o mesmo multiplicando?
Nassif
Nassif
Jedi
Jedi

Mensagens : 249
Data de inscrição : 01/04/2020
Idade : 22
Localização : Rio de Janeiro

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por Elcioschin Qui 25 Jun 2020, 12:31

Sim: para multiplicar uma equação por um valor qualquer k, você deve multiplicar todos os termos dela por este valor k.

Entretanto, não é o caso desta questão, pois para se chegar em a²/b² ou a/b deve-se dividir a equação por a².b²

Note que tudo que foi dito acima vale somente para equação.
Se for inequação, para multiplicar por um valor numérico k deve-se tomar um grande cuidado:

Se k > 0 multiplica ou divide normalmente
Se k < 0 multiplica ou divide e inverte o sinal da inequação

E NUNCA multiplique ou divida uma inequação por uma incógnita, pois ela pode ser positiva, negativa ou nula.
.
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 73181
Data de inscrição : 15/09/2009
Idade : 78
Localização : Santos/SP

Nassif e Victorrr_da_mat01000110 gostam desta mensagem

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por Nassif Qui 25 Jun 2020, 13:04

Boa tarde!
Obrigado mestre!
Nassif
Nassif
Jedi
Jedi

Mensagens : 249
Data de inscrição : 01/04/2020
Idade : 22
Localização : Rio de Janeiro

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por MatheusNavarro λ Seg 15 Jul 2024, 19:06

Olá, Nassif.
Após alguns anos, desde a publicação, enviarei minha resolução.
Pode não ajudá-lo, mas serve de " conhecimento extra " . Uso as aspas pois ainda que tenha uma certa diferença na resoulação, a ideia é a mesma.

https://i.servimg.com/u/f96/20/57/27/03/captur15.png
MatheusNavarro λ
MatheusNavarro λ
Iniciante

Mensagens : 11
Data de inscrição : 02/10/2022
Idade : 16
Localização : cataguases-mg

Ir para o topo Ir para baixo

Álgebra  Empty Re: Álgebra

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos