Fórum PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Lógica matemática

3 participantes

Ir para baixo

Lógica matemática Empty Lógica matemática

Mensagem por camilafisica Sab 21 Dez 2019, 21:42

Analise as seguintes proposições: I - Se 2 é ímpar e Antônio tem mais de 20 anos então a casa de Jorge é vermelha. II – 4 é ímpar se e somente se um quadrado tem cinco lados. III – Ou um quilômetro tem mil metros ou uma hora tem sessenta minutos. É verdadeiro apenas o que se afirma em:

I e II

camilafisica
Padawan
Padawan

Mensagens : 73
Data de inscrição : 17/05/2012
Idade : 35
Localização : queimados

Ir para o topo Ir para baixo

Lógica matemática Empty Re: Lógica matemática

Mensagem por Elcioschin Sab 21 Dez 2019, 22:53

A partícula "ou" não se aplica a III:

Um quilômetro tem mil metros E uma hora tem sessenta minutos.
Isto é, ambos são verdadeiros. Logo, III é falsa
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 62969
Data de inscrição : 15/09/2009
Idade : 75
Localização : Santos/SP

Ir para o topo Ir para baixo

Lógica matemática Empty Re: Lógica matemática

Mensagem por mao_sun Sab 21 Dez 2019, 23:14

Sei que o post já foi respondido, mas deixarei aqui minha visão sobre a questão, talvez sirva como um aprendizado próprio sobre como eu devo responder no fórum ksksksksks.

Analisaremos a questão por partes (I, II e III) e daremos algumas letras para as proposições contidas nas afirmações: 

I.

p: 2 é impar (F)
q: Antônio tem mais de 20 anos (? - não sabemos se é verdade ou não, falaremos disso depois)
r: A casa de Jorge é vermelha (? - de novo, não sabemos de sua veracidade)

Traduzindo o texto da afirmação I, conseguimos: (p ∧ q) → r 

Analisando, primeiramente, o conteúdo entre parênteses, vemos que é uma conjunção (∧) entre q, onde é falso. Em uma conjunção, todas as proposições têm que ser verdadeiras para o resultado final ser verdadeiro, ou seja, não precisamos saber a veracidade de q nesse caso, pois se é falso, então (p ∧ q) também é, portanto (p ∧ q) = F. Saindo dos parênteses, vemos uma condicional (→) entre a anterior, que acabamos de analisar, e a proposição r. Em uma condicional, se a primeira for falsa, de qualquer modo, a afirmação inteira será verdadeira, ou seja: em (p ∧ q) → r, se (p ∧ q) é F, então (p ∧ q) → r é VERDADEIRA, não sendo necessário, de novo, saber a veracidade de r.

II.

g: 4 é impar (F)
s: Um quadrado tem 5 lados (F

Traduzindo o texto da afirmação II, conseguimos: g \longleftrightarrow s

Substituindo as letras por seus valores lógicos, temos: F \longleftrightarrow F. Em uma bicondicional (\longleftrightarrow), se ambas forem falsas, a afirmação inteira é verdadeira, ou seja, g \longleftrightarrow s é VERDADEIRA.

III.

t: 1 km tem 1000 metros (V)
k: 1 hora tem 60 minutos (V)

Traduzindo o texto da afirmação III, conseguimos: V k

Substituindo por seus valores lógicos, obtemos: V V VEm uma disjunção exclusiva (V), se ambas as proposições forem verdadeiras, a afirmação toda será falsa, portanto V k é FALSA.

ConclusãoApenas as afirmações I e II são verdadeiras.

TABELA DAS OPERAÇÕES LÓGICAS
mao_sun
mao_sun
Padawan
Padawan

Mensagens : 59
Data de inscrição : 29/09/2019
Idade : 18
Localização : Salvador, Bahia, Brasil

Ir para o topo Ir para baixo

Lógica matemática Empty Re: Lógica matemática

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo


 
Permissão neste fórum:
Você não pode responder aos tópicos