Poliedro convexo
2 participantes
Página 1 de 1
Poliedro convexo
(PUC-SP) Um poliedro convexo de 33 arestas possui faces triangulares e hexagonais. Sendo 6840º a soma dos ângulos internos das faces, o número de faces triangulares e hexagonais é, respectivamente: (a) 4 e 10 (b) 7 e 7 (c) 6 e 8 (d) 5 e 9 (e) 8 e 6
Paulo Testoni- Membro de Honra
- Mensagens : 3409
Data de inscrição : 19/07/2009
Idade : 77
Localização : Blumenau - Santa Catarina
Re: Poliedro convexo
T=Triangulares
H=Hexagonais
A=Aresta
2A=3T+6H
3T+6H=66
S=(V-2)*360°
6840=(V-2)*360
V-2=684/36
V-2=19
V=21
V+F=A+2
21+F=33+2
F=35-21
F=14
T+H=14 Sistema (1)
3T+6H=66 Sistemas (2)
3H=24
H=8
T+8=14
T=6
H=Hexagonais
A=Aresta
2A=3T+6H
3T+6H=66
S=(V-2)*360°
6840=(V-2)*360
V-2=684/36
V-2=19
V=21
V+F=A+2
21+F=33+2
F=35-21
F=14
T+H=14 Sistema (1)
3T+6H=66 Sistemas (2)
3H=24
H=8
T+8=14
T=6
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos