Semi-circunferências, arcos, tangentes externas...
2 participantes
Página 1 de 1
Andre Ampère- Recebeu o sabre de luz
- Mensagens : 152
Data de inscrição : 23/12/2017
Idade : 27
Localização : São Luís-MA, Brasil
Re: Semi-circunferências, arcos, tangentes externas...
A conclusão (1) vem diretamente da média geométrica no semicírculo. Também pode ser obtida mediante relação métrica no triângulo retângulo ADC onde DB é sua altura em relação ao ângulo reto.
A conclusão (2) é aplicação de Pitágoras, conforme mostrado no desenho.
A conclusão (3) deriva da medida da tangente tirada por um ponto externo à circunferência.
De (1), (2) e (3) concluímos que BD = EF e que estes segmentos cortam-se ao meio. São, portanto, diagonais de um paralelogramo. É fácil ver que o ângulo interno E^BF deste paralelogramo é reto; logo, por simetria, todos os outros também o são. Portanto, EDFB é retângulo.
_____________________________________ EDIÇÃO
Embora seja muito fácil, nem precisa fazer considerações quanto àquele ângulo. O fato das diagonais terem mesma medida obriga a que o paralelogramo seja um retângulo.
Medeiros- Grupo
Velhos amigos do Fórum - Mensagens : 10547
Data de inscrição : 01/09/2009
Idade : 72
Localização : Santos, SP, BR
Tópicos semelhantes
» Questão - Bissetrizes internas e externas
» Bissetrizes Externas
» Teorema das bissetrizes externas
» Teorema das bissetrizes externas
» Por que as partes mais externas do corpo
» Bissetrizes Externas
» Teorema das bissetrizes externas
» Teorema das bissetrizes externas
» Por que as partes mais externas do corpo
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos