PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

(IEZZI) - Distância de pontos.

2 participantes

Ir para baixo

Resolvido (IEZZI) - Distância de pontos.

Mensagem por Bergamotinha OwO Ter 14 Dez 2021, 14:14

Bomm dia, amigos!
Não consegui entender, ao certo, o que se pede nessa questão... Acho que ficou vago, pois não sei se ele me pede a distância entre dois diferentes pontos, que estão contidos na reta AB; ou se ele me pede apenas as coordenadas de 1 ponto, que esteja dentro de AB...
Segue:
------------------------
(IEZZI) Determine na reta AB os pontos equidistantes dos eixos cartesianos.
Dados: A(2,3) e B(-5,1)

Resp.: (IEZZI) - Distância de pontos. Svg+xml;base64,PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPCEtLSBHZW5lcmF0ZWQgYnkgQ29kZUNvZ3Mgd2l0aCBkdmlzdmdtIDIuOS4xIC0tPgo8c3ZnIHZlcnNpb249JzEuMScgeG1sbnM9J2h0dHA6Ly93d3cudzMub3JnLzIwMDAvc3ZnJyB4bWxuczp4bGluaz0naHR0cDovL3d3dy53My5vcmcvMTk5OS94bGluaycgd2lkdGg9JzExNS45NTMzNzlwdCcgaGVpZ2h0PScyNy44MjE5MjZwdCcgdmlld0JveD0nLS4yMzkwNTEgLS4yMjYzNzEgMTE1Ljk1MzM3OSAyNy44MjE5MjYnPgo8ZGVmcz4KPHBhdGggaWQ9J2cwLTAnIGQ9J003Ljg3ODQ1Ni0yLjc0OTY4OUM4LjA4MTY5NC0yLjc0OTY4OSA4LjI5Njg4Ny0yLjc0OTY4OSA4LjI5Njg4Ny0yLjk4ODc5MlM4LjA4MTY5NC0zLjIyNzg5NSA3Ljg3ODQ1Ni0zLjIyNzg5NUgxLjQxMDcxQzEuMjA3NDcyLTMuMjI3ODk1IC45OTIyNzktMy4yMjc4OTUgLjk5MjI3OS0yLjk4ODc5MlMxLjIwNzQ3Mi0yLjc0OTY4OSAxLjQxMDcxLTIuNzQ5Njg5SDcuODc4NDU2WicvPgo8cGF0aCBpZD0nZzEtNTknIGQ9J00yLjMzMTI1OCAuMDQ3ODIxQzIuMzMxMjU4LS42NDU1NzkgMi4xMDQxMS0xLjE1OTY1MSAxLjYxMzk0OC0xLjE1OTY1MUMxLjIzMTM4Mi0xLjE1OTY1MSAxLjA0MDEtLjg0ODgxNyAxLjA0MDEtLjU4NTgwM1MxLjIxOTQyNyAwIDEuNjI1OTAzIDBDMS43ODEzMiAwIDEuOTEyODI3LS4wNDc4MjEgMi4wMjA0MjMtLjE1NTQxN0MyLjA0NDMzNC0uMTc5MzI4IDIuMDU2Mjg5LS4xNzkzMjggMi4wNjgyNDQtLjE3OTMyOEMyLjA5MjE1NC0uMTc5MzI4IDIuMDkyMTU0LS4wMTE5NTUgMi4wOTIxNTQgLjA0NzgyMUMyLjA5MjE1NCAuNDQyMzQxIDIuMDIwNDIzIDEuMjE5NDI3IDEuMzI3MDI0IDEuOTk2NTEzQzEuMTk1NTE3IDIuMTM5OTc1IDEuMTk1NTE3IDIuMTYzODg1IDEuMTk1NTE3IDIuMTg3Nzk2QzEuMTk1NTE3IDIuMjQ3NTcyIDEuMjU1MjkzIDIuMzA3MzQ3IDEuMzE1MDY4IDIuMzA3MzQ3QzEuNDEwNzEgMi4zMDczNDcgMi4zMzEyNTggMS40MjI2NjUgMi4zMzEyNTggLjA0NzgyMVonLz4KPHBhdGggaWQ9J2cxLTEwMScgZD0nTTIuMTM5OTc1LTIuNzczNTk5QzIuNDYyNzY1LTIuNzczNTk5IDMuMjc1NzE2LTIuNzk3NTA5IDMuODQ5NTY0LTMuMDEyNzAyQzQuNzU4MTU3LTMuMzU5NDAyIDQuODQxODQzLTQuMDUyODAyIDQuODQxODQzLTQuMjY3OTk1QzQuODQxODQzLTQuNzk0MDIyIDQuMzg3NTQ3LTUuMjcyMjI5IDMuNTk4NTA2LTUuMjcyMjI5QzIuMzQzMjEzLTUuMjcyMjI5IC41Mzc5ODMtNC4xMzY0ODggLjUzNzk4My0yLjAwODQ2OEMuNTM3OTgzLS43NTMxNzYgMS4yNTUyOTMgLjExOTU1MiAyLjM0MzIxMyAuMTE5NTUyQzMuOTY5MTE2IC4xMTk1NTIgNC45OTcyNi0xLjE0NzY5NiA0Ljk5NzI2LTEuMzAzMTEzQzQuOTk3MjYtMS4zNzQ4NDQgNC45MjU1MjktMS40MzQ2MiA0Ljg3NzcwOS0xLjQzNDYyQzQuODQxODQzLTEuNDM0NjIgNC44Mjk4ODgtMS40MjI2NjUgNC43MjIyOTEtMS4zMTUwNjhDMy45NTcxNjEtLjI5ODg3OSAyLjgyMTQyLS4xMTk1NTIgMi4zNjcxMjMtLjExOTU1MkMxLjY4NTY3OS0uMTE5NTUyIDEuMzI3MDI0LS42NTc1MzQgMS4zMjcwMjQtMS41NDIyMTdDMS4zMjcwMjQtMS43MDk1ODkgMS4zMjcwMjQtMi4wMDg0NjggMS41MDYzNTEtMi43NzM1OTlIMi4xMzk5NzVaTTEuNTY2MTI3LTMuMDEyNzAyQzIuMDgwMTk5LTQuODUzNzk4IDMuMjE1OTQtNS4wMzMxMjYgMy41OTg1MDYtNS4wMzMxMjZDNC4xMjQ1MzMtNS4wMzMxMjYgNC40ODMxODgtNC43MjIyOTEgNC40ODMxODgtNC4yNjc5OTVDNC40ODMxODgtMy4wMTI3MDIgMi41NzAzNjEtMy4wMTI3MDIgMi4wNjgyNDQtMy4wMTI3MDJIMS41NjYxMjdaJy8+CjxwYXRoIGlkPSdnMi00MCcgZD0nTTMuODg1NDMgMi45MDUxMDZDMy44ODU0MyAyLjg2OTI0IDMuODg1NDMgMi44NDUzMyAzLjY4MjE5MiAyLjY0MjA5MkMyLjQ4NjY3NSAxLjQzNDYyIDEuODE3MTg2LS41Mzc5ODMgMS44MTcxODYtMi45NzY4MzdDMS44MTcxODYtNS4yOTYxMzkgMi4zNzkwNzgtNy4yOTI2NTMgMy43NjU4NzgtOC43MDMzNjJDMy44ODU0My04LjgxMDk1OSAzLjg4NTQzLTguODM0ODY5IDMuODg1NDMtOC44NzA3MzVDMy44ODU0My04Ljk0MjQ2NiAzLjgyNTY1NC04Ljk2NjM3NiAzLjc3NzgzMy04Ljk2NjM3NkMzLjYyMjQxNi04Ljk2NjM3NiAyLjY0MjA5Mi04LjEwNTYwNCAyLjA1NjI4OS02LjkzMzk5OEMxLjQ0NjU3NS01LjcyNjUyNiAxLjE3MTYwNi00LjQ0NzMyMyAxLjE3MTYwNi0yLjk3NjgzN0MxLjE3MTYwNi0xLjkxMjgyNyAxLjMzODk3OS0uNDkwMTYyIDEuOTYwNjQ4IC43ODkwNDFDMi42NjYwMDIgMi4yMjM2NjEgMy42NDYzMjYgMy4wMDA3NDcgMy43Nzc4MzMgMy4wMDA3NDdDMy44MjU2NTQgMy4wMDA3NDcgMy44ODU0MyAyLjk3NjgzNyAzLjg4NTQzIDIuOTA1MTA2WicvPgo8cGF0aCBpZD0nZzItNDEnIGQ9J00zLjM3MTM1Ny0yLjk3NjgzN0MzLjM3MTM1Ny0zLjg4NTQzIDMuMjUxODA2LTUuMzY3ODcgMi41ODIzMTYtNi43NTQ2N0MxLjg3Njk2MS04LjE4OTI5IC44OTY2MzgtOC45NjYzNzYgLjc2NTEzMS04Ljk2NjM3NkMuNzE3MzEtOC45NjYzNzYgLjY1NzUzNC04Ljk0MjQ2NiAuNjU3NTM0LTguODcwNzM1Qy42NTc1MzQtOC44MzQ4NjkgLjY1NzUzNC04LjgxMDk1OSAuODYwNzcyLTguNjA3NzIxQzIuMDU2Mjg5LTcuNDAwMjQ5IDIuNzI1Nzc4LTUuNDI3NjQ2IDIuNzI1Nzc4LTIuOTg4NzkyQzIuNzI1Nzc4LS42Njk0ODkgMi4xNjM4ODUgMS4zMjcwMjQgLjc3NzA4NiAyLjczNzczM0MuNjU3NTM0IDIuODQ1MzMgLjY1NzUzNCAyLjg2OTI0IC42NTc1MzQgMi45MDUxMDZDLjY1NzUzNCAyLjk3NjgzNyAuNzE3MzEgMy4wMDA3NDcgLjc2NTEzMSAzLjAwMDc0N0MuOTIwNTQ4IDMuMDAwNzQ3IDEuOTAwODcyIDIuMTM5OTc1IDIuNDg2Njc1IC45NjgzNjlDMy4wOTYzODktLjI1MTA1OSAzLjM3MTM1Ny0xLjU0MjIxNyAzLjM3MTM1Ny0yLjk3NjgzN1onLz4KPHBhdGggaWQ9J2cyLTQ5JyBkPSdNMy40NDMwODgtNy42NjMyNjNDMy40NDMwODgtNy45MzgyMzIgMy40NDMwODgtNy45NTAxODcgMy4yMDM5ODUtNy45NTAxODdDMi45MTcwNjEtNy42MjczOTcgMi4zMTkzMDMtNy4xODUwNTYgMS4wODc5Mi03LjE4NTA1NlYtNi44MzgzNTZDMS4zNjI4ODktNi44MzgzNTYgMS45NjA2NDgtNi44MzgzNTYgMi42MTgxODItNy4xNDkxOTFWLS45MjA1NDhDMi42MTgxODItLjQ5MDE2MiAyLjU4MjMxNi0uMzQ2NyAxLjUzMDI2Mi0uMzQ2N0gxLjE1OTY1MVYwQzEuNDgyNDQxLS4wMjM5MSAyLjY0MjA5Mi0uMDIzOTEgMy4wMzY2MTMtLjAyMzkxUzQuNTc4ODI5LS4wMjM5MSA0LjkwMTYxOSAwVi0uMzQ2N0g0LjUzMTAwOUMzLjQ3ODk1NC0uMzQ2NyAzLjQ0MzA4OC0uNDkwMTYyIDMuNDQzMDg4LS45MjA1NDhWLTcuNjYzMjYzWicvPgo8cGF0aCBpZD0nZzItNTMnIGQ9J00xLjUzMDI2Mi02Ljg1MDMxMUMyLjA0NDMzNC02LjY4MjkzOSAyLjQ2Mjc2NS02LjY3MDk4NCAyLjU5NDI3MS02LjY3MDk4NEMzLjk0NTIwNS02LjY3MDk4NCA0LjgwNTk3OC03LjY2MzI2MyA0LjgwNTk3OC03LjgzMDYzNUM0LjgwNTk3OC03Ljg3ODQ1NiA0Ljc4MjA2Ny03LjkzODIzMiA0LjcxMDMzNi03LjkzODIzMkM0LjY4NjQyNi03LjkzODIzMiA0LjY2MjUxNi03LjkzODIzMiA0LjU1NDkxOS03Ljg5MDQxMUMzLjg4NTQzLTcuNjAzNDg3IDMuMzExNTgyLTcuNTY3NjIxIDMuMDAwNzQ3LTcuNTY3NjIxQzIuMjExNzA2LTcuNTY3NjIxIDEuNjQ5ODEzLTcuODA2NzI1IDEuNDIyNjY1LTcuOTAyMzY2QzEuMzM4OTc5LTcuOTM4MjMyIDEuMzE1MDY4LTcuOTM4MjMyIDEuMzAzMTEzLTcuOTM4MjMyQzEuMjA3NDcyLTcuOTM4MjMyIDEuMjA3NDcyLTcuODY2NTAxIDEuMjA3NDcyLTcuNjc1MjE4Vi00LjEyNDUzM0MxLjIwNzQ3Mi0zLjkwOTM0IDEuMjA3NDcyLTMuODM3NjA5IDEuMzUwOTM0LTMuODM3NjA5QzEuNDEwNzEtMy44Mzc2MDkgMS40MjI2NjUtMy44NDk1NjQgMS41NDIyMTctMy45OTMwMjZDMS44NzY5NjEtNC40ODMxODggMi40Mzg4NTQtNC43NzAxMTIgMy4wMzY2MTMtNC43NzAxMTJDMy42NzAyMzctNC43NzAxMTIgMy45ODEwNzEtNC4xODQzMDkgNC4wNzY3MTItMy45ODEwNzFDNC4yNzk5NS0zLjUxNDgxOSA0LjI5MTkwNS0yLjkyOTAxNiA0LjI5MTkwNS0yLjQ3NDcyUzQuMjkxOTA1LTEuMzM4OTc5IDMuOTU3MTYxLS44MDA5OTZDMy42OTQxNDctLjM3MDYxIDMuMjI3ODk1LS4wNzE3MzEgMi43MDE4NjgtLjA3MTczMUMxLjkxMjgyNy0uMDcxNzMxIDEuMTM1NzQxLS42MDk3MTQgLjkyMDU0OC0xLjQ4MjQ0MUMuOTgwMzI0LTEuNDU4NTMxIDEuMDUyMDU1LTEuNDQ2NTc1IDEuMTExODMxLTEuNDQ2NTc1QzEuMzE1MDY4LTEuNDQ2NTc1IDEuNjM3ODU4LTEuNTY2MTI3IDEuNjM3ODU4LTEuOTcyNjAzQzEuNjM3ODU4LTIuMzA3MzQ3IDEuNDEwNzEtMi40OTg2MyAxLjExMTgzMS0yLjQ5ODYzQy44OTY2MzgtMi40OTg2MyAuNTg1ODAzLTIuMzkxMDM0IC41ODU4MDMtMS45MjQ3ODJDLjU4NTgwMy0uOTA4NTkzIDEuMzk4NzU1IC4yNTEwNTkgMi43MjU3NzggLjI1MTA1OUM0LjA3NjcxMiAuMjUxMDU5IDUuMjYwMjc0LS44ODQ2ODIgNS4yNjAyNzQtMi40MDI5ODlDNS4yNjAyNzQtMy44MjU2NTQgNC4zMDM4NjEtNS4wMDkyMTUgMy4wNDg1NjgtNS4wMDkyMTVDMi4zNjcxMjMtNS4wMDkyMTUgMS44NDEwOTYtNC43MTAzMzYgMS41MzAyNjItNC4zNzU1OTJWLTYuODUwMzExWicvPgo8cGF0aCBpZD0nZzItNTUnIGQ9J001LjY3ODcwNS03LjQyNDE1OVYtNy42OTkxMjhIMi43OTc1MDlDMS4zNTA5MzQtNy42OTkxMjggMS4zMjcwMjQtNy44NTQ1NDUgMS4yNzkyMDMtOC4wODE2OTRIMS4wMTYxODlMLjY0NTU3OS01LjY5MDY2SC45MDg1OTNDLjk0NDQ1OC01LjkwNTg1MyAxLjA1MjA1NS02LjY0NzA3MyAxLjIwNzQ3Mi02Ljc3ODU4QzEuMzAzMTEzLTYuODUwMzExIDIuMTk5NzUxLTYuODUwMzExIDIuMzY3MTIzLTYuODUwMzExSDQuOTAxNjE5TDMuNjM0MzcxLTUuMDMzMTI2QzMuMzExNTgyLTQuNTY2ODc0IDIuMTA0MTEtMi42MDYyMjcgMi4xMDQxMS0uMzU4NjU1QzIuMTA0MTEtLjIyNzE0OCAyLjEwNDExIC4yNTEwNTkgMi41OTQyNzEgLjI1MTA1OUMzLjA5NjM4OSAuMjUxMDU5IDMuMDk2Mzg5LS4yMTUxOTMgMy4wOTYzODktLjM3MDYxVi0uOTY4MzY5QzMuMDk2Mzg5LTIuNzQ5Njg5IDMuMzgzMzEzLTQuMTM2NDg4IDMuOTQ1MjA1LTQuOTM3NDg0TDUuNjc4NzA1LTcuNDI0MTU5WicvPgo8cGF0aCBpZD0nZzItNTcnIGQ9J000LjM3NTU5Mi0zLjQ3ODk1NEM0LjM3NTU5Mi0uNjU3NTM0IDMuMTIwMjk5LS4wNzE3MzEgMi40MDI5ODktLjA3MTczMUMyLjExNjA2NS0uMDcxNzMxIDEuNDgyNDQxLS4xMDc1OTcgMS4xODM1NjItLjUyNjAyN0gxLjI1NTI5M0MxLjMzODk3OS0uNTAyMTE3IDEuNzY5MzY1LS41NzM4NDggMS43NjkzNjUtMS4wMTYxODlDMS43NjkzNjUtMS4yNzkyMDMgMS41OTAwMzctMS41MDYzNTEgMS4yNzkyMDMtMS41MDYzNTFTLjc3NzA4Ni0xLjMwMzExMyAuNzc3MDg2LS45OTIyNzlDLjc3NzA4Ni0uMjUxMDU5IDEuMzc0ODQ0IC4yNTEwNTkgMi40MTQ5NDQgLjI1MTA1OUMzLjkwOTM0IC4yNTEwNTkgNS4zNTU5MTUtMS4zMzg5NzkgNS4zNTU5MTUtMy45MzMyNUM1LjM1NTkxNS03LjE0OTE5MSA0LjAxNjkzNi03Ljk1MDE4NyAyLjk2NDg4Mi03Ljk1MDE4N0MxLjY0OTgxMy03Ljk1MDE4NyAuNDkwMTYyLTYuODUwMzExIC40OTAxNjItNS4yNzIyMjlTMS42MDE5OTMtMi42MTgxODIgMi43OTc1MDktMi42MTgxODJDMy42ODIxOTItMi42MTgxODIgNC4xMzY0ODgtMy4yNjM3NjEgNC4zNzU1OTItMy44NzM0NzRWLTMuNDc4OTU0Wk0yLjg0NTMzLTIuODU3Mjg1QzIuMDkyMTU0LTIuODU3Mjg1IDEuNzY5MzY1LTMuNDY2OTk5IDEuNjYxNzY4LTMuNjk0MTQ3QzEuNDcwNDg2LTQuMTQ4NDQzIDEuNDcwNDg2LTQuNzIyMjkxIDEuNDcwNDg2LTUuMjYwMjc0QzEuNDcwNDg2LTUuOTI5NzYzIDEuNDcwNDg2LTYuNTAzNjExIDEuNzgxMzItNi45OTM3NzNDMS45OTY1MTMtNy4zMTY1NjMgMi4zMTkzMDMtNy42NjMyNjMgMi45NjQ4ODItNy42NjMyNjNDMy42NDYzMjYtNy42NjMyNjMgMy45OTMwMjYtNy4wNjU1MDQgNC4xMTI1NzgtNi43OTA1MzVDNC4zNTE2ODEtNi4yMDQ3MzIgNC4zNTE2ODEtNS4xODg1NDMgNC4zNTE2ODEtNS4wMDkyMTVDNC4zNTE2ODEtNC4wMDQ5ODEgMy44OTczODUtMi44NTcyODUgMi44NDUzMy0yLjg1NzI4NVonLz4KPC9kZWZzPgo8ZyBpZD0ncGFnZTEnIHRyYW5zZm9ybT0nbWF0cml4KDEuMTMgMCAwIDEuMTMgLTYzLjk4NjA0MyAtNjAuNTkyMDk0KSc+Cjx1c2UgeD0nNTYuNDEzMjY3JyB5PSc2OS41OTA0NDYnIHhsaW5rOmhyZWY9JyNnMi00MCcvPgo8dXNlIHg9JzYyLjE2MTEwNycgeT0nNjEuNTAyNjg3JyB4bGluazpocmVmPScjZzItNDknLz4KPHVzZSB4PSc2OC4wMTQwOTcnIHk9JzYxLjUwMjY4NycgeGxpbms6aHJlZj0nI2cyLTU1Jy8+CjxyZWN0IHg9JzYyLjE2MTEwNycgeT0nNjYuMzYyNTYnIGhlaWdodD0nLjQ3ODE4Nycgd2lkdGg9JzExLjcwNTk4MScvPgo8dXNlIHg9JzY1LjA4NzYwMicgeT0nNzcuNzkxMTA4JyB4bGluazpocmVmPScjZzItNTMnLz4KPHVzZSB4PSc3NS4wNjI2MDEnIHk9JzY5LjU5MDQ0NicgeGxpbms6aHJlZj0nI2cxLTU5Jy8+Cjx1c2UgeD0nODEuNTAyMjc0JyB5PSc2MS41MDI2ODcnIHhsaW5rOmhyZWY9JyNnMi00OScvPgo8dXNlIHg9Jzg3LjM1NTI2NCcgeT0nNjEuNTAyNjg3JyB4bGluazpocmVmPScjZzItNTUnLz4KPHJlY3QgeD0nODEuNTAyMjc0JyB5PSc2Ni4zNjI1NicgaGVpZ2h0PScuNDc4MTg3JyB3aWR0aD0nMTEuNzA1OTgxJy8+Cjx1c2UgeD0nODQuNDI4NzY5JyB5PSc3Ny43OTExMDgnIHhsaW5rOmhyZWY9JyNnMi01MycvPgo8dXNlIHg9Jzk0LjQwMzc2OCcgeT0nNjkuNTkwNDQ2JyB4bGluazpocmVmPScjZzItNDEnLz4KPHVzZSB4PScxMDAuOTQ4NTkxJyB5PSc2OS41OTA0NDYnIHhsaW5rOmhyZWY9JyNnMS0xMDEnLz4KPHVzZSB4PScxMDguMzY2NTI5JyB5PSc2OS41OTA0NDYnIHhsaW5rOmhyZWY9JyNnMi00MCcvPgo8dXNlIHg9JzExNC4xMTQzNjgnIHk9JzYxLjUwMjY4NycgeGxpbms6aHJlZj0nI2cwLTAnLz4KPHVzZSB4PScxMjMuNDEyODY2JyB5PSc2MS41MDI2ODcnIHhsaW5rOmhyZWY9JyNnMi00OScvPgo8dXNlIHg9JzEyOS4yNjU4NTYnIHk9JzYxLjUwMjY4NycgeGxpbms6aHJlZj0nI2cyLTU1Jy8+CjxyZWN0IHg9JzExNC4xMTQzNjgnIHk9JzY2LjM2MjU2JyBoZWlnaHQ9Jy40NzgxODcnIHdpZHRoPScyMS4wMDQ0NycvPgo8dXNlIHg9JzEyMS42OTAxMTYnIHk9Jzc3Ljc5MTEwOCcgeGxpbms6aHJlZj0nI2cyLTU3Jy8+Cjx1c2UgeD0nMTM2LjMxNDM1MicgeT0nNjkuNTkwNDQ2JyB4bGluazpocmVmPScjZzEtNTknLz4KPHVzZSB4PScxNDIuNzU0MDI1JyB5PSc2MS41MDI2ODcnIHhsaW5rOmhyZWY9JyNnMi00OScvPgo8dXNlIHg9JzE0OC42MDcwMTUnIHk9JzYxLjUwMjY4NycgeGxpbms6aHJlZj0nI2cyLTU1Jy8+CjxyZWN0IHg9JzE0Mi43NTQwMjUnIHk9JzY2LjM2MjU2JyBoZWlnaHQ9Jy40NzgxODcnIHdpZHRoPScxMS43MDU5ODEnLz4KPHVzZSB4PScxNDUuNjgwNTInIHk9Jzc3Ljc5MTEwOCcgeGxpbms6aHJlZj0nI2cyLTU3Jy8+Cjx1c2UgeD0nMTU1LjY1NTUxOScgeT0nNjkuNTkwNDQ2JyB4bGluazpocmVmPScjZzItNDEnLz4KPC9nPgo8L3N2Zz4=


Obrigado!


Última edição por Bergamotinha OwO em Ter 14 Dez 2021, 16:25, editado 1 vez(es)
Bergamotinha OwO
Bergamotinha OwO
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 112
Data de inscrição : 25/10/2021
Localização : Pé de laranjeira, Brasil

Ir para o topo Ir para baixo

Resolvido Re: (IEZZI) - Distância de pontos.

Mensagem por Renan Almeida Ter 14 Dez 2021, 14:44

Realmente ficou meio confuso, mas acredito que um ponto equidistante dos eixos cartesianos indica que a distância deste ponto até x é a mesma distância dele até y. 

Primeiro acharemos a lei da função.
2a + b = 3
-5a + b = 1
a = 2/7
b = 17/7

y = 2x/7 + 17/7, para -5≤x≤2 e 1≤y≤3

Para que sejam equidistantes, o módulo dos valores da coordenada devem ser iguais.
Ex.: Perceba que tanto os pontos (2, 2) e (-2,2) são cada um equidistantes de x e y, pois |2| = |2| e |-2| = |2|. 
Inclusive, muitos definem o módulo com o sentido de distância.

|x| = |y|
x = y ou x = -y

y = 2y/7 + 17/7
y = 17/5
Como x = y, as coordenadas do ponto são (17/5; 17/5)

y = 2(-y)/7 + 17/7
y = 17/9
Como x = -y, as coordenadas do ponto são (-17/9; 17/9)

Por fim, é só conferir com os valores que fazem parte da reta (-5≤x≤2 e 1≤y≤3).
O primeiro ponto não faz parte do segmento AB, pois x é maior que 2 e y é maior que 3.
Já o segundo ponto é possível, portanto, essa deveria ser a única resposta.

(-17/9; 17/9)
Renan Almeida
Renan Almeida
Matador
Matador

Mensagens : 318
Data de inscrição : 11/08/2017
Idade : 22
Localização : Ipatinga MG Brasil

Bergamotinha OwO gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: (IEZZI) - Distância de pontos.

Mensagem por Bergamotinha OwO Ter 14 Dez 2021, 16:25

Olá colega Renan!

Obrigado pela ajuda!
Sobre o gabarito... eu cheguei a procurar essa questão na internet, mas não achei nada sobre o gabarito...

Entretanto, seguindo a sua resolução, não faz sentido realmente o primeiro ponto fazer parte de AB.
Vou anotar sua resolução aqui pontuando esse erro no gabarito!

Obrigado! cheers
Bergamotinha OwO
Bergamotinha OwO
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 112
Data de inscrição : 25/10/2021
Localização : Pé de laranjeira, Brasil

Renan Almeida gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: (IEZZI) - Distância de pontos.

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos