funcoes trigonometricas
2 participantes
PiR2 :: Matemática :: Trigonometria
Página 1 de 1
funcoes trigonometricas
Como resolvo estas questoes ?
1) sen(2x)+sen(4x) =0 , no intervalo [-∞,∞]
2) resolva a inequacao no intervalo indicado.
0 ≤ 2cos(x+ ∏/3 ) ≤ 1
- ∏/3 ≤ x ≤ 5∏/3
1) sen(2x)+sen(4x) =0 , no intervalo [-∞,∞]
2) resolva a inequacao no intervalo indicado.
0 ≤ 2cos(x+ ∏/3 ) ≤ 1
- ∏/3 ≤ x ≤ 5∏/3
luis agb- Iniciante
- Mensagens : 3
Data de inscrição : 18/10/2019
Idade : 30
Localização : rj
Re: funcoes trigonometricas
1) sen4x= 2*sen(2x)*cos(2x)
Sen2x+ 2*sen(2x)*cos(2x) =0
Colocando sen2x em evidência temos:
Sen2x(1+2cos(2x))=0
Se2x =0 ou 1+ 2cos(2x)=0
Tente terminar o restante.
2)0 ≤ 2cos(x+ ∏/3 ) ≤ 1
Dividindo por 2 ,temos:
0 ≤ cos(x+ ∏/3 ) ≤ 1/2
Para ∏/3 ≤ x ≤ 5∏/3,temos:
∏/3 ≤X+∏/3≤ 90
Ou
3∏/2 ≤ X+∏ ≤5pi/3
Tente terminar
Sen2x+ 2*sen(2x)*cos(2x) =0
Colocando sen2x em evidência temos:
Sen2x(1+2cos(2x))=0
Se2x =0 ou 1+ 2cos(2x)=0
Tente terminar o restante.
2)0 ≤ 2cos(x+ ∏/3 ) ≤ 1
Dividindo por 2 ,temos:
0 ≤ cos(x+ ∏/3 ) ≤ 1/2
Para ∏/3 ≤ x ≤ 5∏/3,temos:
∏/3 ≤X+∏/3≤ 90
Ou
3∏/2 ≤ X+∏ ≤5pi/3
Tente terminar
Emersonsouza- Fera
- Mensagens : 1100
Data de inscrição : 14/01/2015
Idade : 28
Localização : Rio de Janeiro
Re: funcoes trigonometricas
Eu poderia utilizar a identidade trigonometrica
2cos(a-b/2)*sen(a+b/2) para resolver ?
2cos(a-b/2)*sen(a+b/2) para resolver ?
luis agb- Iniciante
- Mensagens : 3
Data de inscrição : 18/10/2019
Idade : 30
Localização : rj
Re: funcoes trigonometricas
Sim,pode fazer desta forma sem problema.
Só que neste caso é 2*sen(a+b/2)*COS(a-b/2)
2*sen(a-b/2)*sen(a+b/2) --> está incorreto
Só que neste caso é 2*sen(a+b/2)*COS(a-b/2)
2*sen(a-b/2)*sen(a+b/2) --> está incorreto
Emersonsouza- Fera
- Mensagens : 1100
Data de inscrição : 14/01/2015
Idade : 28
Localização : Rio de Janeiro
Tópicos semelhantes
» eq. trigonometricas
» Funções trigonométricas
» Identidades trigonométricas
» Funções trigonométricas
» Relações trigonométricas.
» Funções trigonométricas
» Identidades trigonométricas
» Funções trigonométricas
» Relações trigonométricas.
PiR2 :: Matemática :: Trigonometria
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos