PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Polinômio P(x) condição necessária

2 participantes

Ir para baixo

Polinômio P(x) condição necessária Empty Polinômio P(x) condição necessária

Mensagem por Zeis Qui 30 Jul 2020, 19:06

demonstrar que a condição necessária e suficiente para que um número real ou complexo a seja raiz dupla de uma equação P(x) =0 na qual P(x)  é um polinômio inteiro em x, é que sejam nulos P (a) e P'(a)  sendo P" # a.

Zeis
Mestre Jedi
Mestre Jedi

Mensagens : 530
Data de inscrição : 16/03/2020

Ir para o topo Ir para baixo

Polinômio P(x) condição necessária Empty Re: Polinômio P(x) condição necessária

Mensagem por Take me down Sex 31 Jul 2020, 04:51

Olá, Zeis,

P(a) = 0 ---> P(x) = A(x-a)(x-x2)(x-x3)...(x-xn)

Como P'(x) = A(x-x2)(x-x3)...(x-xn) + A(x-a)[...], aplicamos a outra condição:

P'(a) = 0 ---> P'(a) = A(a-x2)(a-x3)...(a-xn) = 0

Desse modo, existe i entre 2 e n tal que xi = a.

Temos, portanto, que 'a' é raiz dupla. Mas isso a princípio, uma vez que devemos verificar P''(a), o que é um processo totalmente análogo.

Podemos fazer a volta supondo P(x) = A(x-a)²(x-x3)...(x-xn), com P'(x) = A.2(x-a)(x-x3)...(x-xn) + A(x-a)²[...].

Então, (x-a) também é fator de P'(x).

Seguindo esse raciocínio, temos que a ideia para P''(x) é novamente bastante parecida.

Abs
Take me down
Take me down
Padawan
Padawan

Mensagens : 92
Data de inscrição : 20/01/2019
Idade : 34
Localização : Brasil-RJ/RJ

https://www.youtube.com/c/GuilhermeCetrangolo

Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos