PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Questões de P.A.

2 participantes

Ir para baixo

Questões de P.A. Empty Questões de P.A.

Mensagem por Fissurado Sab 16 Ago 2014, 11:50

1) Apagada

2) Provar que se (a1, a2, a3, ..., na) é uma P.A, com n>2, então (a_{2}^{2}-a_{1}^{2}, a_{3}^{2}-a_{2}^{2},a_{4}^{2}-a_{3}^{2},...,a_{n}^{2}-a_{n-1}^{2}  ) também é.

 Poderiam me ajudar? Desde já agradeço e desculpe-me por tomar o tempo de vocês.

Fissurado
Iniciante

Mensagens : 1
Data de inscrição : 12/05/2014
Idade : 27
Localização : Carapicuíba-SP/Brasil

Ir para o topo Ir para baixo

Questões de P.A. Empty Re: Questões de P.A.

Mensagem por Elcioschin Sab 16 Ago 2014, 13:33

Você não está respeitando a Regra VI do fórum. apagada uma questão

2) PA ----> a1, a2, a2, a4 ....... an ---> a2 = a1 + r ---> a3 = a1 + 2r ----> a4 = a1 + 3r ---> an = a1 + (n - 1).r

3) A1 = (a2)² - (a1)² = (a1 + r)² - (a1)² = 2,a1.r + r²

A2 = (a3)² - (a2)² = (a1 + 2r)² - (a1 + r)² = 2.a1.r + 3.r²

A3 = (a4)² - (a3)² = (a1 + 3r)² - (a1 + 2r)² = 2.a1.r + 5.r²



A seguência A1, A2, A3 é uma PA como a1 = 2.a1.r e razão r' = 2.r²
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 67990
Data de inscrição : 15/09/2009
Idade : 76
Localização : Santos/SP

Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos