Fórum PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Colégio Naval 1990

4 participantes

Página 2 de 2 Anterior  1, 2

Ir para baixo

Colégio Naval 1990 - Página 2 Empty Colégio Naval 1990

Mensagem por Drufox Qui 28 Mar 2013, 19:47

Relembrando a primeira mensagem :

eu acho essa prova uma das mais enjoada do CN

[Você precisa estar registrado e conectado para ver este link.]

2 questão estão com o enunciado errado , vou colocar o correto

10)No Colégio Naval, a turma do 1º ano é distribuída em 5
salas. Num teste de Álgebra, as médias aritméticas das
notas dos alunos, por sala, foram respectivamente:
5,2: 6,3: 7,1 e 5,9. A media aritmética das notas da turma
é:
(não tem o 5,5) que está no site

11. Sejam A ={x £ IN* / x < 1200}e B= {y£A/y é primo com 1200}. O número de elementos de B é:

apenas essas duas.

Drufox
Estrela Dourada
Estrela Dourada

Mensagens : 1127
Data de inscrição : 05/05/2011
Idade : 21
Localização : Rio de janeiro

Ir para o topo Ir para baixo


Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por Drufox Sex 29 Mar 2013, 10:32

4) x1 e x2 são as raizes , equação: ax²+bx+c=0

x=-b +-V(b²-4ac)/2C

x1.x2=c/a
c=ax1.x2

-b+-V(b²-4ac)/2.(ax1.x2)

-b+-V(b²-4ac)/2a . 1/x1.x2

-b+Vb²-4ac/2a => x1
-b²-Vb²-4ac/2A =>x2

x1. 1/x1.x2= 1/x2= x2(-¹)
x2. 1/x1.x2= 1/x1= x1^(-¹)

alternativa c

Drufox
Estrela Dourada
Estrela Dourada

Mensagens : 1127
Data de inscrição : 05/05/2011
Idade : 21
Localização : Rio de janeiro

Ir para o topo Ir para baixo

Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por Drufox Sex 29 Mar 2013, 10:37

5) o ângulo tem que ser proporcional ao numero de lados do poligono
360= 2³.3².5
divisores: (3+1).(2+1).(1+1) = 24
os divisores de 360 são: (1,2,3,4,5,6,8,9,10,12,15,18,,20,24,30,63,40,45,60,72,90,120,180,360)
mais não server o 180 nem o 360 , e nem os numeros impares pois numeros impares não passam pelo centro : n/2 so pode ser par.
então discanta: 1,3,5,15,45

discartou: 1,3,5,15,45,180,360

24-7=17

alternativa a

Drufox
Estrela Dourada
Estrela Dourada

Mensagens : 1127
Data de inscrição : 05/05/2011
Idade : 21
Localização : Rio de janeiro

Ir para o topo Ir para baixo

Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por Drufox Sex 29 Mar 2013, 10:42

11) A ={x £ IN* / x < 1200}e B= {y£A/y é primo com 1200}.

vamos ver:em sequencias quantos são primos com 1200
de 1 a 10= 1 e 7
10 a 20= 11,13,17,19 =>8 numeros
20 a 30=23,29

30 a 40=31,37
40 a 50=41,43,47,49 =>8 numeros
50 a 60= 53,59

repare que de 30 em 30 , 8 numeros são primos com 1200

30 = 8
1200= x
x=320

outra forma:
1200=2^4.3.5²
1200. = (2-1).(3-1).(5-1)/ 2.3.5
1200.1.2.4/2.3.5
1200.8/30=320
resposta: c

Drufox
Estrela Dourada
Estrela Dourada

Mensagens : 1127
Data de inscrição : 05/05/2011
Idade : 21
Localização : Rio de janeiro

Ir para o topo Ir para baixo

Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por Drufox Sex 29 Mar 2013, 11:11

questão 18

observando o grafico
[Você precisa estar registrado e conectado para ver esta imagem.]
unica coisa que podemos afirmar é que o c>0
resposta: d

Drufox
Estrela Dourada
Estrela Dourada

Mensagens : 1127
Data de inscrição : 05/05/2011
Idade : 21
Localização : Rio de janeiro

Ir para o topo Ir para baixo

Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por leonardo camilo tiburcio Sex 19 Abr 2013, 22:15

Sem dúvidas , umas das provas mais difíceis do CN!!!
Principalmente questões como a 12,15, 17 {mais complicada da prova} e a 19!
leonardo camilo tiburcio
leonardo camilo tiburcio
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 115
Data de inscrição : 06/09/2012
Idade : 24
Localização : RJ

Ir para o topo Ir para baixo

Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por Igor de Almeida Seg 10 Mar 2014, 02:12

Questão 13


[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]


Notemos que o triângulo em questão é retângulo em A

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]


[Você precisa estar registrado e conectado para ver esta imagem.]


Dessa forma, usando trigonometria no triângulo retângulo, chegamos a seguinte conclusão

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]


Chamando S de Área
[Você precisa estar registrado e conectado para ver esta imagem.]


Portanto, a área procurando será

[Você precisa estar registrado e conectado para ver esta imagem.]
Igor de Almeida
Igor de Almeida
Padawan
Padawan

Mensagens : 59
Data de inscrição : 22/09/2013
Idade : 23
Localização : São João del Rei MG

Ir para o topo Ir para baixo

Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por Igor de Almeida Seg 10 Mar 2014, 23:02

Questão 12

[Você precisa estar registrado e conectado para ver esta imagem.]


Ângulo cêntrico do triângulo equilátero --> 120°
Ângulo cêntrico do quadrado --> 90°
Ângulo cêntrico do pentágono --> 72°

Dessa forma, o ângulo AOB mede 78°, que é oqe falta pra chegar a 360°

[Você precisa estar registrado e conectado para ver esta imagem.]

Podemos perceber que quanto maior o ângulo central, maior é o lado, dessa forma, o lado CD (pentágono) obrigatoriamente é menor que o lado do quadrado e maior que o lado do hexágono.

[Você precisa estar registrado e conectado para ver esta imagem.]

Isolando o R e aproximando [Você precisa estar registrado e conectado para ver esta imagem.] para 1,4, chegamos a seguinte conclusão

[Você precisa estar registrado e conectado para ver esta imagem.]

O lado procurado é menor que o lado do quadrado e maior que o lado do pentágono

[Você precisa estar registrado e conectado para ver esta imagem.]


Substituindo o R por 1,2, chegamos a

[Você precisa estar registrado e conectado para ver esta imagem.]


Note que, até aqui, tanto a alternativa B quanto a C são válidas, mas fazendo algumas análises, vemos que a medida de AD está muito mais próximo do lado do pentágono que do lado do quadrado, isso porque, a medida em graus do ângulo cêntrico do quadrado é 90°, do lado procurado é 78° e, do lado do pentágono é 72°. Dito isso, por eliminação, a alternativa correta é B

[Você precisa estar registrado e conectado para ver esta imagem.]
Igor de Almeida
Igor de Almeida
Padawan
Padawan

Mensagens : 59
Data de inscrição : 22/09/2013
Idade : 23
Localização : São João del Rei MG

Ir para o topo Ir para baixo

Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por Igor de Almeida Ter 18 Mar 2014, 00:02


Questão 17

A resolução dessa questão é muito grande, confusa e difícil, vou tentar fazer o possível pra ficar bem explicado.

[Você precisa estar registrado e conectado para ver esta imagem.]


[Você precisa estar registrado e conectado para ver esta imagem.]

Analisando o ângulo CEM, percebemos facilmente que ele mede \alpha + \beta
Desse modo, os triângulos DMC e EMC são retângulos em M, logo, eles são semelhantes.

Chamando o lado do quadrado de a, e o segmento AE de y, vamos achar y em função de a usando pitágoras

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

Usando relação métrica no triângulo retângulo, é possível achar a medida do segmento CM (w)

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

Agora usa-se pitágoras para achar a medida de DM (k)

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

Tendo todas as medias do triângulo DMC, podemos achar sua área

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]


Agora, iremos traçar a diagonal DB, ficando desse jeito o desenho

[Você precisa estar registrado e conectado para ver esta imagem.]

Os triângulos DGC e BGF são semelhantes e, chamando a altura do triângulo BGF de h e a altura do triângulo DGC de q, temos a seguinte relação

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

Sabemos também que q + h = a, dessa forma, temos

[Você precisa estar registrado e conectado para ver esta imagem.]

Substituindo o h em função do q

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

Desse modo, a área do triângulo DGC será

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

Finalmente, para achar a área hachurada, que chamaremos de SH, basta subtrair da área do triângulo DGC a área do triângulo DMC (achando a área do triângulo DGM) e multiplica-la por 2

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

[Você precisa estar registrado e conectado para ver esta imagem.]

Segundo o exercício, S é a área do quadrado e, como "a" é o lado do quadrado, temos a relação: S = a²
Substituindo na expressão da área hachurada, chegaremos a alternativa C

[Você precisa estar registrado e conectado para ver esta imagem.]
Igor de Almeida
Igor de Almeida
Padawan
Padawan

Mensagens : 59
Data de inscrição : 22/09/2013
Idade : 23
Localização : São João del Rei MG

Ir para o topo Ir para baixo

Colégio Naval 1990 - Página 2 Empty Re: Colégio Naval 1990

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Página 2 de 2 Anterior  1, 2

Ir para o topo


 
Permissão neste fórum:
Você não pode responder aos tópicos