PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

(ITA-1961) Números inteiros positivos II

2 participantes

Ir para baixo

(ITA-1961) Números inteiros positivos II Empty (ITA-1961) Números inteiros positivos II

Mensagem por Jigsaw Dom 22 Out 2023, 14:17

1 – Qual a condição necessária e suficiente que devem satisfazer [latex]p[/latex] e [latex]q[/latex], de modo que [latex]x^p+2a^qx^{p-q}+a^p[/latex] seja divisível por [latex]x+a[/latex]. ([latex]p,q[/latex] são números inteiros positivos, [latex]p>q [/latex]).

Spoiler:
Jigsaw
Jigsaw
Monitor
Monitor

Mensagens : 766
Data de inscrição : 26/12/2020
Localização : São Paulo/SP

Ir para o topo Ir para baixo

(ITA-1961) Números inteiros positivos II Empty Re: (ITA-1961) Números inteiros positivos II

Mensagem por tales amaral Dom 22 Out 2023, 14:31

Já tem no fórum. Basta usar o teorema do resto e analisar a paridade

____________________________________________
Licenciatura em Matemática (2022 - ????)
tales amaral
tales amaral
Monitor
Monitor

Mensagens : 577
Data de inscrição : 02/05/2020
Idade : 20
Localização : Serra, ES

https://talesamaral.github.io/

Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos