PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Função Inversa

2 participantes

Ir para baixo

Resolvido Função Inversa

Mensagem por Alberto Nascente Sab 26 Nov 2022, 10:53

16. Se Função Inversa Svg+xml;base64,PD94bWwgdmVyc2lvbj0nMS4wJyBlbmNvZGluZz0nVVRGLTgnPz4KPCEtLSBHZW5lcmF0ZWQgYnkgQ29kZUNvZ3Mgd2l0aCBkdmlzdmdtIDIuMTMuMyAtLT4KPHN2ZyB2ZXJzaW9uPScxLjEnIHhtbG5zPSdodHRwOi8vd3d3LnczLm9yZy8yMDAwL3N2ZycgeG1sbnM6eGxpbms9J2h0dHA6Ly93d3cudzMub3JnLzE5OTkveGxpbmsnIHdpZHRoPScxMjkuMDMyNDQ0cHQnIGhlaWdodD0nMjQuMzYzNTM1cHQnIHZpZXdCb3g9Jy0uMjM5MDUxIC0uMjI3NDQxIDEyOS4wMzI0NDQgMjQuMzYzNTM1Jz4KPGRlZnM+CjxwYXRoIGlkPSdnMS00MCcgZD0nTTMuODg1NDMgMi45MDUxMDZDMy44ODU0MyAyLjg2OTI0IDMuODg1NDMgMi44NDUzMyAzLjY4MjE5MiAyLjY0MjA5MkMyLjQ4NjY3NSAxLjQzNDYyIDEuODE3MTg2LS41Mzc5ODMgMS44MTcxODYtMi45NzY4MzdDMS44MTcxODYtNS4yOTYxMzkgMi4zNzkwNzgtNy4yOTI2NTMgMy43NjU4NzgtOC43MDMzNjJDMy44ODU0My04LjgxMDk1OSAzLjg4NTQzLTguODM0ODY5IDMuODg1NDMtOC44NzA3MzVDMy44ODU0My04Ljk0MjQ2NiAzLjgyNTY1NC04Ljk2NjM3NiAzLjc3NzgzMy04Ljk2NjM3NkMzLjYyMjQxNi04Ljk2NjM3NiAyLjY0MjA5Mi04LjEwNTYwNCAyLjA1NjI4OS02LjkzMzk5OEMxLjQ0NjU3NS01LjcyNjUyNiAxLjE3MTYwNi00LjQ0NzMyMyAxLjE3MTYwNi0yLjk3NjgzN0MxLjE3MTYwNi0xLjkxMjgyNyAxLjMzODk3OS0uNDkwMTYyIDEuOTYwNjQ4IC43ODkwNDFDMi42NjYwMDIgMi4yMjM2NjEgMy42NDYzMjYgMy4wMDA3NDcgMy43Nzc4MzMgMy4wMDA3NDdDMy44MjU2NTQgMy4wMDA3NDcgMy44ODU0MyAyLjk3NjgzNyAzLjg4NTQzIDIuOTA1MTA2WicvPgo8cGF0aCBpZD0nZzEtNDEnIGQ9J00zLjM3MTM1Ny0yLjk3NjgzN0MzLjM3MTM1Ny0zLjg4NTQzIDMuMjUxODA2LTUuMzY3ODcgMi41ODIzMTYtNi43NTQ2N0MxLjg3Njk2MS04LjE4OTI5IC44OTY2MzgtOC45NjYzNzYgLjc2NTEzMS04Ljk2NjM3NkMuNzE3MzEtOC45NjYzNzYgLjY1NzUzNC04Ljk0MjQ2NiAuNjU3NTM0LTguODcwNzM1Qy42NTc1MzQtOC44MzQ4NjkgLjY1NzUzNC04LjgxMDk1OSAuODYwNzcyLTguNjA3NzIxQzIuMDU2Mjg5LTcuNDAwMjQ5IDIuNzI1Nzc4LTUuNDI3NjQ2IDIuNzI1Nzc4LTIuOTg4NzkyQzIuNzI1Nzc4LS42Njk0ODkgMi4xNjM4ODUgMS4zMjcwMjQgLjc3NzA4NiAyLjczNzczM0MuNjU3NTM0IDIuODQ1MzMgLjY1NzUzNCAyLjg2OTI0IC42NTc1MzQgMi45MDUxMDZDLjY1NzUzNCAyLjk3NjgzNyAuNzE3MzEgMy4wMDA3NDcgLjc2NTEzMSAzLjAwMDc0N0MuOTIwNTQ4IDMuMDAwNzQ3IDEuOTAwODcyIDIuMTM5OTc1IDIuNDg2Njc1IC45NjgzNjlDMy4wOTYzODktLjI1MTA1OSAzLjM3MTM1Ny0xLjU0MjIxNyAzLjM3MTM1Ny0yLjk3NjgzN1onLz4KPHBhdGggaWQ9J2cxLTQzJyBkPSdNNC43NzAxMTItMi43NjE2NDRIOC4wNjk3MzhDOC4yMzcxMTEtMi43NjE2NDQgOC40NTIzMDQtMi43NjE2NDQgOC40NTIzMDQtMi45NzY4MzdDOC40NTIzMDQtMy4yMDM5ODUgOC4yNDkwNjYtMy4yMDM5ODUgOC4wNjk3MzgtMy4yMDM5ODVINC43NzAxMTJWLTYuNTAzNjExQzQuNzcwMTEyLTYuNjcwOTg0IDQuNzcwMTEyLTYuODg2MTc3IDQuNTU0OTE5LTYuODg2MTc3QzQuMzI3NzcxLTYuODg2MTc3IDQuMzI3NzcxLTYuNjgyOTM5IDQuMzI3NzcxLTYuNTAzNjExVi0zLjIwMzk4NUgxLjAyODE0NEMuODYwNzcyLTMuMjAzOTg1IC42NDU1NzktMy4yMDM5ODUgLjY0NTU3OS0yLjk4ODc5MkMuNjQ1NTc5LTIuNzYxNjQ0IC44NDg4MTctMi43NjE2NDQgMS4wMjgxNDQtMi43NjE2NDRINC4zMjc3NzFWLjUzNzk4M0M0LjMyNzc3MSAuNzA1MzU1IDQuMzI3NzcxIC45MjA1NDggNC41NDI5NjQgLjkyMDU0OEM0Ljc3MDExMiAuOTIwNTQ4IDQuNzcwMTEyIC43MTczMSA0Ljc3MDExMiAuNTM3OTgzVi0yLjc2MTY0NFonLz4KPHBhdGggaWQ9J2cxLTUwJyBkPSdNNS4yNjAyNzQtMi4wMDg0NjhINC45OTcyNkM0Ljk2MTM5NS0xLjgwNTIzIDQuODY1NzUzLTEuMTQ3Njk2IDQuNzQ2MjAyLS45NTY0MTNDNC42NjI1MTYtLjg0ODgxNyAzLjk4MTA3MS0uODQ4ODE3IDMuNjIyNDE2LS44NDg4MTdIMS40MTA3MUMxLjczMzQ5OS0xLjEyMzc4NiAyLjQ2Mjc2NS0xLjg4ODkxNyAyLjc3MzU5OS0yLjE3NTg0MUM0LjU5MDc4NS0zLjg0OTU2NCA1LjI2MDI3NC00LjQ3MTIzMyA1LjI2MDI3NC01LjY1NDc5NUM1LjI2MDI3NC03LjAyOTYzOSA0LjE3MjM1NC03Ljk1MDE4NyAyLjc4NTU1NC03Ljk1MDE4N1MuNTg1ODAzLTYuNzY2NjI1IC41ODU4MDMtNS43Mzg0ODFDLjU4NTgwMy01LjEyODc2NyAxLjExMTgzMS01LjEyODc2NyAxLjE0NzY5Ni01LjEyODc2N0MxLjM5ODc1NS01LjEyODc2NyAxLjcwOTU4OS01LjMwODA5NSAxLjcwOTU4OS01LjY5MDY2QzEuNzA5NTg5LTYuMDI1NDA1IDEuNDgyNDQxLTYuMjUyNTUzIDEuMTQ3Njk2LTYuMjUyNTUzQzEuMDQwMS02LjI1MjU1MyAxLjAxNjE4OS02LjI1MjU1MyAuOTgwMzI0LTYuMjQwNTk4QzEuMjA3NDcyLTcuMDUzNTQ5IDEuODUzMDUxLTcuNjAzNDg3IDIuNjMwMTM3LTcuNjAzNDg3QzMuNjQ2MzI2LTcuNjAzNDg3IDQuMjY3OTk1LTYuNzU0NjcgNC4yNjc5OTUtNS42NTQ3OTVDNC4yNjc5OTUtNC42Mzg2MDUgMy42ODIxOTItMy43NTM5MjMgMy4wMDA3NDctMi45ODg3OTJMLjU4NTgwMy0uMjg2OTI0VjBINC45NDk0NEw1LjI2MDI3NC0yLjAwODQ2OFonLz4KPHBhdGggaWQ9J2cxLTUxJyBkPSdNMi4xOTk3NTEtNC4yOTE5MDVDMS45OTY1MTMtNC4yNzk5NSAxLjk0ODY5Mi00LjI2Nzk5NSAxLjk0ODY5Mi00LjE2MDM5OUMxLjk0ODY5Mi00LjA0MDg0NyAyLjAwODQ2OC00LjA0MDg0NyAyLjIyMzY2MS00LjA0MDg0N0gyLjc3MzU5OUMzLjc4OTc4OC00LjA0MDg0NyA0LjI0NDA4NS0zLjIwMzk4NSA0LjI0NDA4NS0yLjA1NjI4OUM0LjI0NDA4NS0uNDkwMTYyIDMuNDMxMTMzLS4wNzE3MzEgMi44NDUzMy0uMDcxNzMxQzIuMjcxNDgyLS4wNzE3MzEgMS4yOTExNTgtLjM0NjcgLjk0NDQ1OC0xLjEzNTc0MUMxLjMyNzAyNC0xLjA3NTk2NSAxLjY3MzcyNC0xLjI5MTE1OCAxLjY3MzcyNC0xLjcyMTU0NEMxLjY3MzcyNC0yLjA2ODI0NCAxLjQyMjY2NS0yLjMwNzM0NyAxLjA4NzkyLTIuMzA3MzQ3Qy44MDA5OTYtMi4zMDczNDcgLjQ5MDE2Mi0yLjEzOTk3NSAuNDkwMTYyLTEuNjg1Njc5Qy40OTAxNjItLjYyMTY2OSAxLjU1NDE3MiAuMjUxMDU5IDIuODgxMTk2IC4yNTEwNTlDNC4zMDM4NjEgLjI1MTA1OSA1LjM1NTkxNS0uODM2ODYyIDUuMzU1OTE1LTIuMDQ0MzM0QzUuMzU1OTE1LTMuMTQ0MjA5IDQuNDcxMjMzLTQuMDA0OTgxIDMuMzIzNTM3LTQuMjA4MjE5QzQuMzYzNjM2LTQuNTA3MDk4IDUuMDMzMTI2LTUuMzc5ODI2IDUuMDMzMTI2LTYuMzEyMzI5QzUuMDMzMTI2LTcuMjU2Nzg3IDQuMDUyODAyLTcuOTUwMTg3IDIuODkzMTUxLTcuOTUwMTg3QzEuNjk3NjM0LTcuOTUwMTg3IC44MTI5NTEtNy4yMjA5MjIgLjgxMjk1MS02LjM0ODE5NEMuODEyOTUxLTUuODY5OTg4IDEuMTgzNTYyLTUuNzc0MzQ2IDEuMzYyODg5LTUuNzc0MzQ2QzEuNjEzOTQ4LTUuNzc0MzQ2IDEuOTAwODcyLTUuOTUzNjc0IDEuOTAwODcyLTYuMzEyMzI5QzEuOTAwODcyLTYuNjk0ODk0IDEuNjEzOTQ4LTYuODYyMjY3IDEuMzUwOTM0LTYuODYyMjY3QzEuMjc5MjAzLTYuODYyMjY3IDEuMjU1MjkzLTYuODYyMjY3IDEuMjE5NDI3LTYuODUwMzExQzEuNjczNzI0LTcuNjYzMjYzIDIuNzk3NTA5LTcuNjYzMjYzIDIuODU3Mjg1LTcuNjYzMjYzQzMuMjUxODA2LTcuNjYzMjYzIDQuMDI4ODkyLTcuNDgzOTM1IDQuMDI4ODkyLTYuMzEyMzI5QzQuMDI4ODkyLTYuMDg1MTgxIDMuOTkzMDI2LTUuNDE1NjkxIDMuNjQ2MzI2LTQuOTAxNjE5QzMuMjg3NjcxLTQuMzc1NTkyIDIuODgxMTk2LTQuMzM5NzI2IDIuNTU4NDA2LTQuMzI3NzcxTDIuMTk5NzUxLTQuMjkxOTA1WicvPgo8cGF0aCBpZD0nZzEtNjEnIGQ9J004LjA2OTczOC0zLjg3MzQ3NEM4LjIzNzExMS0zLjg3MzQ3NCA4LjQ1MjMwNC0zLjg3MzQ3NCA4LjQ1MjMwNC00LjA4ODY2N0M4LjQ1MjMwNC00LjMxNTgxNiA4LjI0OTA2Ni00LjMxNTgxNiA4LjA2OTczOC00LjMxNTgxNkgxLjAyODE0NEMuODYwNzcyLTQuMzE1ODE2IC42NDU1NzktNC4zMTU4MTYgLjY0NTU3OS00LjEwMDYyM0MuNjQ1NTc5LTMuODczNDc0IC44NDg4MTctMy44NzM0NzQgMS4wMjgxNDQtMy44NzM0NzRIOC4wNjk3MzhaTTguMDY5NzM4LTEuNjQ5ODEzQzguMjM3MTExLTEuNjQ5ODEzIDguNDUyMzA0LTEuNjQ5ODEzIDguNDUyMzA0LTEuODY1MDA2QzguNDUyMzA0LTIuMDkyMTU0IDguMjQ5MDY2LTIuMDkyMTU0IDguMDY5NzM4LTIuMDkyMTU0SDEuMDI4MTQ0Qy44NjA3NzItMi4wOTIxNTQgLjY0NTU3OS0yLjA5MjE1NCAuNjQ1NTc5LTEuODc2OTYxQy42NDU1NzktMS42NDk4MTMgLjg0ODgxNy0xLjY0OTgxMyAxLjAyODE0NC0xLjY0OTgxM0g4LjA2OTczOFonLz4KPHBhdGggaWQ9J2cwLTI1JyBkPSdNMy4wOTYzODktNC41MDcwOThINC40NDczMjNDNC4xMjQ1MzMtMy4xNjgxMiAzLjkyMTI5NS0yLjI5NTM5MiAzLjkyMTI5NS0xLjMzODk3OUMzLjkyMTI5NS0xLjE3MTYwNiAzLjkyMTI5NSAuMTE5NTUyIDQuNDExNDU3IC4xMTk1NTJDNC42NjI1MTYgLjExOTU1MiA0Ljg3NzcwOS0uMTA3NTk3IDQuODc3NzA5LS4zMTA4MzRDNC44Nzc3MDktLjM3MDYxIDQuODc3NzA5LS4zOTQ1MjEgNC43OTQwMjItLjU3Mzg0OEM0LjQ3MTIzMy0xLjM5ODc1NSA0LjQ3MTIzMy0yLjQyNjg5OSA0LjQ3MTIzMy0yLjUxMDU4NUM0LjQ3MTIzMy0yLjU4MjMxNiA0LjQ3MTIzMy0zLjQzMTEzMyA0LjcyMjI5MS00LjUwNzA5OEg2LjA2MTI3QzYuMjE2Njg3LTQuNTA3MDk4IDYuNjExMjA4LTQuNTA3MDk4IDYuNjExMjA4LTQuODg5NjY0QzYuNjExMjA4LTUuMTUyNjc3IDYuMzg0MDYtNS4xNTI2NzcgNi4xNjg4NjctNS4xNTI2NzdIMi4yMzU2MTZDMS45NjA2NDgtNS4xNTI2NzcgMS41NTQxNzItNS4xNTI2NzcgMS4wMDQyMzQtNC41NjY4NzRDLjY5MzQtNC4yMjAxNzQgLjMxMDgzNC0zLjU4NjU1IC4zMTA4MzQtMy41MTQ4MTlTLjM3MDYxLTMuNDE5MTc4IC40NDIzNDEtMy40MTkxNzhDLjUyNjAyNy0zLjQxOTE3OCAuNTM3OTgzLTMuNDU1MDQ0IC41OTc3NTgtMy41MjY3NzVDMS4yMTk0MjctNC41MDcwOTggMS44NDEwOTYtNC41MDcwOTggMi4xMzk5NzUtNC41MDcwOThIMi44MjE0MkMyLjU1ODQwNi0zLjYxMDQ2MSAyLjI1OTUyNy0yLjU3MDM2MSAxLjI3OTIwMy0uNDc4MjA3QzEuMTgzNTYyLS4yODY5MjQgMS4xODM1NjItLjI2MzAxNCAxLjE4MzU2Mi0uMTkxMjgzQzEuMTgzNTYyIC4wNTk3NzYgMS4zOTg3NTUgLjExOTU1MiAxLjUwNjM1MSAuMTE5NTUyQzEuODUzMDUxIC4xMTk1NTIgMS45NDg2OTItLjE5MTI4MyAyLjA5MjE1NC0uNjkzNEMyLjI4MzQzNy0xLjMwMzExMyAyLjI4MzQzNy0xLjMyNzAyNCAyLjQwMjk4OS0xLjgwNTIzTDMuMDk2Mzg5LTQuNTA3MDk4WicvPgo8cGF0aCBpZD0nZzAtMTAyJyBkPSdNNS4zMzIwMDUtNC44MDU5NzhDNS41NzExMDgtNC44MDU5NzggNS42NjY3NS00LjgwNTk3OCA1LjY2Njc1LTUuMDMzMTI2QzUuNjY2NzUtNS4xNTI2NzcgNS41NzExMDgtNS4xNTI2NzcgNS4zNTU5MTUtNS4xNTI2NzdINC4zODc1NDdDNC42MTQ2OTUtNi4zODQwNiA0Ljc4MjA2Ny03LjIzMjg3NyA0Ljg3NzcwOS03LjYxNTQ0MkM0Ljk0OTQ0LTcuOTAyMzY2IDUuMjAwNDk4LTguMTc3MzM1IDUuNTExMzMzLTguMTc3MzM1QzUuNzYyMzkxLTguMTc3MzM1IDYuMDEzNDUtOC4wNjk3MzggNi4xMzMwMDEtNy45NjIxNDJDNS42NjY3NS03LjkxNDMyMSA1LjUyMzI4OC03LjU2NzYyMSA1LjUyMzI4OC03LjM2NDM4NEM1LjUyMzI4OC03LjEyNTI4IDUuNzAyNjE1LTYuOTgxODE4IDUuOTI5NzYzLTYuOTgxODE4QzYuMTY4ODY3LTYuOTgxODE4IDYuNTI3NTIyLTcuMTg1MDU2IDYuNTI3NTIyLTcuNjM5MzUyQzYuNTI3NTIyLTguMTQxNDY5IDYuMDI1NDA1LTguNDE2NDM4IDUuNDk5Mzc3LTguNDE2NDM4QzQuOTg1MzA1LTguNDE2NDM4IDQuNDgzMTg4LTguMDMzODczIDQuMjQ0MDg1LTcuNTY3NjIxQzQuMDI4ODkyLTcuMTQ5MTkxIDMuOTA5MzQtNi43MTg4MDQgMy42MzQzNzEtNS4xNTI2NzdIMi44MzMzNzVDMi42MDYyMjctNS4xNTI2NzcgMi40ODY2NzUtNS4xNTI2NzcgMi40ODY2NzUtNC45Mzc0ODRDMi40ODY2NzUtNC44MDU5NzggMi41NTg0MDYtNC44MDU5NzggMi43OTc1MDktNC44MDU5NzhIMy41NjI2NEMzLjM0NzQ0Ny0zLjY5NDE0NyAyLjg1NzI4NS0uOTkyMjc5IDIuNTgyMzE2IC4yODY5MjRDMi4zNzkwNzggMS4zMjcwMjQgMi4xOTk3NTEgMi4xOTk3NTEgMS42MDE5OTMgMi4xOTk3NTFDMS41NjYxMjcgMi4xOTk3NTEgMS4yMTk0MjcgMi4xOTk3NTEgMS4wMDQyMzQgMS45NzI2MDNDMS42MTM5NDggMS45MjQ3ODIgMS42MTM5NDggMS4zOTg3NTUgMS42MTM5NDggMS4zODY4QzEuNjEzOTQ4IDEuMTQ3Njk2IDEuNDM0NjIgMS4wMDQyMzQgMS4yMDc0NzIgMS4wMDQyMzRDLjk2ODM2OSAxLjAwNDIzNCAuNjA5NzE0IDEuMjA3NDcyIC42MDk3MTQgMS42NjE3NjhDLjYwOTcxNCAyLjE3NTg0MSAxLjEzNTc0MSAyLjQzODg1NCAxLjYwMTk5MyAyLjQzODg1NEMyLjgyMTQyIDIuNDM4ODU0IDMuMzIzNTM3IC4yNTEwNTkgMy40NTUwNDQtLjM0NjdDMy42NzAyMzctMS4yNjcyNDggNC4yNTYwNC00LjQ0NzMyMyA0LjMxNTgxNi00LjgwNTk3OEg1LjMzMjAwNVonLz4KPHBhdGggaWQ9J2cwLTEwMycgZD0nTTQuMDQwODQ3LTEuNTE4MzA2QzMuOTkzMDI2LTEuMzI3MDI0IDMuOTY5MTE2LTEuMjc5MjAzIDMuODEzNjk5LTEuMDk5ODc1QzMuMzIzNTM3LS40NjYyNTIgMi44MjE0Mi0uMjM5MTAzIDIuNDUwODA5LS4yMzkxMDNDMi4wNTYyODktLjIzOTEwMyAxLjY4NTY3OS0uNTQ5OTM4IDEuNjg1Njc5LTEuMzc0ODQ0QzEuNjg1Njc5LTIuMDA4NDY4IDIuMDQ0MzM0LTMuMzQ3NDQ3IDIuMzA3MzQ3LTMuODg1NDNDMi42NTQwNDctNC41NTQ5MTkgMy4xOTIwMy01LjAzMzEyNiAzLjY5NDE0Ny01LjAzMzEyNkM0LjQ4MzE4OC01LjAzMzEyNiA0LjYzODYwNS00LjA1MjgwMiA0LjYzODYwNS0zLjk4MTA3MUw0LjYwMjc0LTMuODEzNjk5TDQuMDQwODQ3LTEuNTE4MzA2Wk00Ljc4MjA2Ny00LjQ4MzE4OEM0LjYyNjY1LTQuODI5ODg4IDQuMjkxOTA1LTUuMjcyMjI5IDMuNjk0MTQ3LTUuMjcyMjI5QzIuMzkxMDM0LTUuMjcyMjI5IC45MDg1OTMtMy42MzQzNzEgLjkwODU5My0xLjg1MzA1MUMuOTA4NTkzLS42MDk3MTQgMS42NjE3NjggMCAyLjQyNjg5OSAwQzMuMDYwNTIzIDAgMy42MjI0MTYtLjUwMjExNyAzLjgzNzYwOS0uNzQxMjJMMy41NzQ1OTUgLjMzNDc0NUMzLjQwNzIyMyAuOTkyMjc5IDMuMzM1NDkyIDEuMjkxMTU4IDIuOTA1MTA2IDEuNzA5NTg5QzIuNDE0OTQ0IDIuMTk5NzUxIDEuOTYwNjQ4IDIuMTk5NzUxIDEuNjk3NjM0IDIuMTk5NzUxQzEuMzM4OTc5IDIuMTk5NzUxIDEuMDQwMSAyLjE3NTg0MSAuNzQxMjIgMi4wODAxOTlDMS4xMjM3ODYgMS45NzI2MDMgMS4yMTk0MjcgMS42Mzc4NTggMS4yMTk0MjcgMS41MDYzNTFDMS4yMTk0MjcgMS4zMTUwNjggMS4wNzU5NjUgMS4xMjM3ODYgLjgxMjk1MSAxLjEyMzc4NkMuNTI2MDI3IDEuMTIzNzg2IC4yMTUxOTMgMS4zNjI4ODkgLjIxNTE5MyAxLjc1NzQxQy4yMTUxOTMgMi4yNDc1NzIgLjcwNTM1NSAyLjQzODg1NCAxLjcyMTU0NCAyLjQzODg1NEMzLjI2Mzc2MSAyLjQzODg1NCA0LjA2NDc1NyAxLjQ0NjU3NSA0LjIyMDE3NCAuODAwOTk2TDUuNTQ3MTk4LTQuNTU0OTE5QzUuNTgzMDY0LTQuNjk4MzgxIDUuNTgzMDY0LTQuNzIyMjkxIDUuNTgzMDY0LTQuNzQ2MjAyQzUuNTgzMDY0LTQuOTEzNTc0IDUuNDUxNTU3LTUuMDQ1MDgxIDUuMjcyMjI5LTUuMDQ1MDgxQzQuOTg1MzA1LTUuMDQ1MDgxIDQuODE3OTMzLTQuODA1OTc4IDQuNzgyMDY3LTQuNDgzMTg4WicvPgo8cGF0aCBpZD0nZzAtMTE2JyBkPSdNMi40MDI5ODktNC44MDU5NzhIMy41MDI4NjRDMy43MzAwMTItNC44MDU5NzggMy44NDk1NjQtNC44MDU5NzggMy44NDk1NjQtNS4wMjExNzFDMy44NDk1NjQtNS4xNTI2NzcgMy43Nzc4MzMtNS4xNTI2NzcgMy41Mzg3My01LjE1MjY3N0gyLjQ4NjY3NUwyLjkyOTAxNi02Ljg5ODEzMkMyLjk3NjgzNy03LjA2NTUwNCAyLjk3NjgzNy03LjA4OTQxNSAyLjk3NjgzNy03LjE3MzEwMUMyLjk3NjgzNy03LjM2NDM4NCAyLjgyMTQyLTcuNDcxOTggMi42NjYwMDItNy40NzE5OEMyLjU3MDM2MS03LjQ3MTk4IDIuMjk1MzkyLTcuNDM2MTE1IDIuMTk5NzUxLTcuMDUzNTQ5TDEuNzMzNDk5LTUuMTUyNjc3SC42MDk3MTRDLjM3MDYxLTUuMTUyNjc3IC4yNjMwMTQtNS4xNTI2NzcgLjI2MzAxNC00LjkyNTUyOUMuMjYzMDE0LTQuODA1OTc4IC4zNDY3LTQuODA1OTc4IC41NzM4NDgtNC44MDU5NzhIMS42Mzc4NThMLjg0ODgxNy0xLjY0OTgxM0MuNzUzMTc2LTEuMjMxMzgyIC43MTczMS0xLjExMTgzMSAuNzE3MzEtLjk1NjQxM0MuNzE3MzEtLjM5NDUyMSAxLjExMTgzMSAuMTE5NTUyIDEuNzgxMzIgLjExOTU1MkMyLjk4ODc5MiAuMTE5NTUyIDMuNjM0MzcxLTEuNjI1OTAzIDMuNjM0MzcxLTEuNzA5NTg5QzMuNjM0MzcxLTEuNzgxMzIgMy41ODY1NS0xLjgxNzE4NiAzLjUxNDgxOS0xLjgxNzE4NkMzLjQ5MDkwOS0xLjgxNzE4NiAzLjQ0MzA4OC0xLjgxNzE4NiAzLjQxOTE3OC0xLjc2OTM2NUMzLjQwNzIyMy0xLjc1NzQxIDMuMzk1MjY4LTEuNzQ1NDU1IDMuMzExNTgyLTEuNTU0MTcyQzMuMDYwNTIzLS45NTY0MTMgMi41MTA1ODUtLjExOTU1MiAxLjgxNzE4Ni0uMTE5NTUyQzEuNDU4NTMxLS4xMTk1NTIgMS40MzQ2Mi0uNDE4NDMxIDEuNDM0NjItLjY4MTQ0NUMxLjQzNDYyLS42OTM0IDEuNDM0NjItLjkyMDU0OCAxLjQ3MDQ4Ni0xLjA2NDAxTDIuNDAyOTg5LTQuODA1OTc4WicvPgo8cGF0aCBpZD0nZzAtMTIwJyBkPSdNNS42NjY3NS00Ljg3NzcwOUM1LjI4NDE4NC00LjgwNTk3OCA1LjE0MDcyMi00LjUxOTA1NCA1LjE0MDcyMi00LjI5MTkwNUM1LjE0MDcyMi00LjAwNDk4MSA1LjM2Nzg3LTMuOTA5MzQgNS41MzUyNDMtMy45MDkzNEM1Ljg5Mzg5OC0zLjkwOTM0IDYuMTQ0OTU2LTQuMjIwMTc0IDYuMTQ0OTU2LTQuNTQyOTY0QzYuMTQ0OTU2LTUuMDQ1MDgxIDUuNTcxMTA4LTUuMjcyMjI5IDUuMDY4OTkxLTUuMjcyMjI5QzQuMzM5NzI2LTUuMjcyMjI5IDMuOTMzMjUtNC41NTQ5MTkgMy44MjU2NTQtNC4zMjc3NzFDMy41NTA2ODUtNS4yMjQ0MDggMi44MDk0NjUtNS4yNzIyMjkgMi41OTQyNzEtNS4yNzIyMjlDMS4zNzQ4NDQtNS4yNzIyMjkgLjcyOTI2NS0zLjcwNjEwMiAuNzI5MjY1LTMuNDQzMDg4Qy43MjkyNjUtMy4zOTUyNjggLjc3NzA4Ni0zLjMzNTQ5MiAuODYwNzcyLTMuMzM1NDkyQy45NTY0MTMtMy4zMzU0OTIgLjk4MDMyNC0zLjQwNzIyMyAxLjAwNDIzNC0zLjQ1NTA0NEMxLjQxMDcxLTQuNzgyMDY3IDIuMjExNzA2LTUuMDMzMTI2IDIuNTU4NDA2LTUuMDMzMTI2QzMuMDk2Mzg5LTUuMDMzMTI2IDMuMjAzOTg1LTQuNTMxMDA5IDMuMjAzOTg1LTQuMjQ0MDg1QzMuMjAzOTg1LTMuOTgxMDcxIDMuMTMyMjU0LTMuNzA2MTAyIDIuOTg4NzkyLTMuMTMyMjU0TDIuNTgyMzE2LTEuNDk0Mzk2QzIuNDAyOTg5LS43NzcwODYgMi4wNTYyODktLjExOTU1MiAxLjQyMjY2NS0uMTE5NTUyQzEuMzYyODg5LS4xMTk1NTIgMS4wNjQwMS0uMTE5NTUyIC44MTI5NTEtLjI3NDk2OUMxLjI0MzMzNy0uMzU4NjU1IDEuMzM4OTc5LS43MTczMSAxLjMzODk3OS0uODYwNzcyQzEuMzM4OTc5LTEuMDk5ODc1IDEuMTU5NjUxLTEuMjQzMzM3IC45MzI1MDMtMS4yNDMzMzdDLjY0NTU3OS0xLjI0MzMzNyAuMzM0NzQ1LS45OTIyNzkgLjMzNDc0NS0uNjA5NzE0Qy4zMzQ3NDUtLjEwNzU5NyAuODk2NjM4IC4xMTk1NTIgMS40MTA3MSAuMTE5NTUyQzEuOTg0NTU4IC4xMTk1NTIgMi4zOTEwMzQtLjMzNDc0NSAyLjY0MjA5Mi0uODI0OTA3QzIuODMzMzc1LS4xMTk1NTIgMy40MzExMzMgLjExOTU1MiAzLjg3MzQ3NCAuMTE5NTUyQzUuMDkyOTAyIC4xMTk1NTIgNS43Mzg0ODEtMS40NDY1NzUgNS43Mzg0ODEtMS43MDk1ODlDNS43Mzg0ODEtMS43NjkzNjUgNS42OTA2Ni0xLjgxNzE4NiA1LjYxODkyOS0xLjgxNzE4NkM1LjUxMTMzMy0xLjgxNzE4NiA1LjQ5OTM3Ny0xLjc1NzQxIDUuNDYzNTEyLTEuNjYxNzY4QzUuMTQwNzIyLS42MDk3MTQgNC40NDczMjMtLjExOTU1MiAzLjkwOTM0LS4xMTk1NTJDMy40OTA5MDktLjExOTU1MiAzLjI2Mzc2MS0uNDMwMzg2IDMuMjYzNzYxLS45MjA1NDhDMy4yNjM3NjEtMS4xODM1NjIgMy4zMTE1ODItMS4zNzQ4NDQgMy41MDI4NjQtMi4xNjM4ODVMMy45MjEyOTUtMy43ODk3ODhDNC4xMDA2MjMtNC41MDcwOTggNC41MDcwOTgtNS4wMzMxMjYgNS4wNTcwMzYtNS4wMzMxMjZDNS4wODA5NDYtNS4wMzMxMjYgNS40MTU2OTEtNS4wMzMxMjYgNS42NjY3NS00Ljg3NzcwOVonLz4KPC9kZWZzPgo8ZyBpZD0ncGFnZTEnIHRyYW5zZm9ybT0nbWF0cml4KDEuMTMgMCAwIDEuMTMgLTYzLjk4NjA0MyAtNjAuODc4Mzc5KSc+Cjx1c2UgeD0nNTYuNDEzMjY3JyB5PSc2Ny4wMzMzODQnIHhsaW5rOmhyZWY9JyNnMC0xMDInLz4KPHVzZSB4PSc2My40NTk3MDQnIHk9JzY3LjAzMzM4NCcgeGxpbms6aHJlZj0nI2cxLTQwJy8+Cjx1c2UgeD0nNjguMDEyMDI5JyB5PSc2Ny4wMzMzODQnIHhsaW5rOmhyZWY9JyNnMC0xMjAnLz4KPHVzZSB4PSc3NC42NjQxMTcnIHk9JzY3LjAzMzM4NCcgeGxpbms6aHJlZj0nI2cxLTQxJy8+Cjx1c2UgeD0nODIuNTM3MjcyJyB5PSc2Ny4wMzMzODQnIHhsaW5rOmhyZWY9JyNnMS02MScvPgo8dXNlIHg9Jzk0Ljk2Mjc1MycgeT0nNjcuMDMzMzg0JyB4bGluazpocmVmPScjZzEtNTEnLz4KPHVzZSB4PScxMDMuNDcyNDA2JyB5PSc2Ny4wMzMzODQnIHhsaW5rOmhyZWY9JyNnMS00MycvPgo8dXNlIHg9JzExNS4yMzM3MjEnIHk9JzY3LjAzMzM4NCcgeGxpbms6aHJlZj0nI2cwLTEyMCcvPgo8dXNlIHg9JzEyNC41NDI0NzInIHk9JzY3LjAzMzM4NCcgeGxpbms6aHJlZj0nI2cxLTQzJy8+Cjx1c2UgeD0nMTM2LjMwMzc4NycgeT0nNjcuMDMzMzg0JyB4bGluazpocmVmPScjZzAtMTE2Jy8+Cjx1c2UgeD0nMTQwLjUzMDk0NycgeT0nNjcuMDMzMzg0JyB4bGluazpocmVmPScjZzAtMTAzJy8+Cjx1c2UgeD0nMTQ2LjU2NTIwMycgeT0nNjcuMDMzMzg0JyB4bGluazpocmVmPScjZzEtNDAnLz4KPHVzZSB4PScxNTIuMzEzMDQyJyB5PSc1OC45NDU2MjYnIHhsaW5rOmhyZWY9JyNnMC0yNScvPgo8dXNlIHg9JzE1OS4zODIzMTInIHk9JzU4Ljk0NTYyNicgeGxpbms6aHJlZj0nI2cwLTEyMCcvPgo8cmVjdCB4PScxNTIuMzEzMDQyJyB5PSc2My44MDU0OTknIGhlaWdodD0nLjQ3ODE4Nycgd2lkdGg9JzEzLjcyMTM1NycvPgo8dXNlIHg9JzE1Ni4yNDcyMzMnIHk9Jzc1LjIzNDA0NycgeGxpbms6aHJlZj0nI2cxLTUwJy8+Cjx1c2UgeD0nMTY3LjIyOTkxMycgeT0nNjcuMDMzMzg0JyB4bGluazpocmVmPScjZzEtNDEnLz4KPC9nPgo8L3N2Zz4=, onde -1 < x < 1

a) Encontre f-1(3).
b) Encontre f(f-1(5)).

S/ gabarito.


Ñ consegui desenvolver a parte do isolar "x" e dps trocar pra "y"
Obrigado! Very Happy


Última edição por Alberto Nascente em Qua 30 Nov 2022, 10:27, editado 1 vez(es)

Alberto Nascente
Iniciante

Mensagens : 44
Data de inscrição : 18/11/2022
Idade : 18
Localização : Rio Grande do Norte

Ir para o topo Ir para baixo

Resolvido Re: Função Inversa

Mensagem por tales amaral Seg 28 Nov 2022, 08:44

[latex]f^{-1}(3) = x \iff f(x )= 3[/latex]
Resolvendo para x:

    [latex]3 = 3+x+\tan\left(\frac{\pi x}{2} \right ) \iff -x = \tan\left(\frac{\pi x}{2} \right )[/latex]

Sim. Eu poderia aplicar arctan, mas não ajudaria muito.

Se [latex]0 < x < 1[/latex], temos -x negativo e  [latex]\tan\left(\frac{\pi x}{2} \right ) [/latex] positivo.

Se [latex]-1 < x < 0[/latex], temos -x positivo e  [latex]\tan\left(\frac{\pi x}{2} \right ) [/latex] negativo.

Se x =0, temos        [latex] -x = 0 [/latex] e [latex]\tan\left(\frac{\pi x}{2} \right ) = 0[/latex], portanto x = 0 é  solução e     [latex]f^{-1} (3) = 0[/latex].
Observe que se     [latex]-1 < x < 1 \iff -\dfrac{\pi}{2} < \dfrac{\pi x}{2} < \dfrac{\pi}{2}[/latex].




Função Inversa KweGOGnoPWsAAAAASUVORK5CYII=


b)

Para qualquer f,     [latex]f(f^{-1}(x)) = x[/latex], então     [latex]f(f^{-1}(5)) = 5[/latex]
tales amaral
tales amaral
Jedi
Jedi

Mensagens : 355
Data de inscrição : 02/05/2020
Idade : 19
Localização : Serra, ES

https://talesamaral.github.io/

Alberto Nascente gosta desta mensagem

Ir para o topo Ir para baixo

Resolvido Re: Função Inversa

Mensagem por Alberto Nascente Qua 30 Nov 2022, 10:27

Entendi.

Obrigado! Very Happy

Alberto Nascente
Iniciante

Mensagens : 44
Data de inscrição : 18/11/2022
Idade : 18
Localização : Rio Grande do Norte

Ir para o topo Ir para baixo

Resolvido Re: Função Inversa

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo

- Tópicos semelhantes

 
Permissões neste sub-fórum
Não podes responder a tópicos