Divisibilidade de polinômios
2 participantes
Página 1 de 1
Divisibilidade de polinômios
Determine o polinômio P(x) de coeficientes racionais e do 5º grau, sabendo-se que: P(x) +1 é divisível por (x-1)³ e que P(x) -1 é divisível por (x+1)³
Gabarito: P(x)= -(3/8)x^5 +(5/4)x³ - (15/8)x
Então, eu consegui fazer esse exercício declarando o polinômio p(x) como: P(x) + 1 = (ax² + bx + c)(x-1)³, e sabendo que p(-1)=1 pelo enunciado.
eu derivei o polinômio 2 vezes e usando o fato que P(-1) = P'(-1) = P''(-1) = 1 eu fiz um sistema 3x3 com a, b e c
alguém saberia um jeito melhor de fazer esse exercício? pq esse método que eu usei é muito muito longo (inviável em uma prova eu acho)
muito obrigado desde já! lembrando que só uma sugestão de resolução já ta valendo! =)
Gabarito: P(x)= -(3/8)x^5 +(5/4)x³ - (15/8)x
Então, eu consegui fazer esse exercício declarando o polinômio p(x) como: P(x) + 1 = (ax² + bx + c)(x-1)³, e sabendo que p(-1)=1 pelo enunciado.
eu derivei o polinômio 2 vezes e usando o fato que P(-1) = P'(-1) = P''(-1) = 1 eu fiz um sistema 3x3 com a, b e c
alguém saberia um jeito melhor de fazer esse exercício? pq esse método que eu usei é muito muito longo (inviável em uma prova eu acho)
muito obrigado desde já! lembrando que só uma sugestão de resolução já ta valendo! =)
Re: Divisibilidade de polinômios
P(x) + 1 ≡ p(x)*(x-1)³
P(x) - 1 ≡ q(x)*(x+1)³
onde p(x) e q(x) são de grau 2.
Sabemos que P'(x) é de grau 4 e possui 1 e -1 como raízes duplas. Assim, conhecemos todas as raízes de P'(x).
P'(x) = a(x-1)²(x+1)²
P'(x) = a(x² - 1)^2
P'(x) = a(x^4 - 2x² + 1)
Integrando:
P(x) = a(x^5/5 - 2x³/3 + x) + b
Sabemos que P(1) = -1 e P(-1) = 1. Note que (x^5/5 - 2x³/3 + x) é ímpar e, portanto, os coeficientes do a serão opostos, no sistema. De cara, portanto, nota-se que b = 0. Assim, basta substituir um valor e encontrar apenas a.
P(x) - 1 ≡ q(x)*(x+1)³
onde p(x) e q(x) são de grau 2.
Sabemos que P'(x) é de grau 4 e possui 1 e -1 como raízes duplas. Assim, conhecemos todas as raízes de P'(x).
P'(x) = a(x-1)²(x+1)²
P'(x) = a(x² - 1)^2
P'(x) = a(x^4 - 2x² + 1)
Integrando:
P(x) = a(x^5/5 - 2x³/3 + x) + b
Sabemos que P(1) = -1 e P(-1) = 1. Note que (x^5/5 - 2x³/3 + x) é ímpar e, portanto, os coeficientes do a serão opostos, no sistema. De cara, portanto, nota-se que b = 0. Assim, basta substituir um valor e encontrar apenas a.
Ashitaka- Monitor
- Mensagens : 4365
Data de inscrição : 12/03/2013
Localização : São Paulo
gustavodiniz gosta desta mensagem
Tópicos semelhantes
» Divisibilidade de polinômios
» (IME) Divisibilidade de polinômios
» divisibilidade de polinômios
» Divisibilidade
» Divisibilidade.
» (IME) Divisibilidade de polinômios
» divisibilidade de polinômios
» Divisibilidade
» Divisibilidade.
Página 1 de 1
Permissões neste sub-fórum
Não podes responder a tópicos