Fórum PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Aceleração centrípeta - Dedução da fórmula

Ir para baixo

Aceleração centrípeta - Dedução da fórmula Empty Aceleração centrípeta - Dedução da fórmula

Mensagem por PedroX Dom 26 Ago 2018, 13:25

Este artigo foi originalmente postado pelo Euclides numa página extra.

Num movimento circular e uniforme (MCU), temos um corpo que se desloca com velocidade escalar tangencial constante (uniforme) ao longo de uma trajetória circular. Velocidade, entretanto, é um vetor. No MCU, a parte escalar da velocidade não varia. O que acontece com a direção do movimento?

É evidente que a direção da velocidade varia permanentemente para que possa percorrer a trajetória circular. Então podemos dizer com segurança que, se a componente escalar da velocidade é constante, o mesmo não acontece com a velocidade vetorial.

Se uma velocidade varia, a primeira lei de Newton assegura que age sobre ela uma resultante não-nula. Há, portanto, em ação uma força cuja peculiaridade é fazer alterar constantemente apenas a direção do vetor velocidade, sem alterar-lhe o módulo.

Para produzir esse efeito uma força não pode ter componente na direção da velocidade e deve ser sempre perpendicular a ela. Essa força deve ser sempre radial em relação à trajetória e voltada para o centro dela.

Aceleração centrípeta - Dedução da fórmula Forca-centripeta-1

Estamos nos referindo à força centrípeta. E como de acordo com a segunda lei de Newton, o resultado dessa força é variação de velocidade em relação ao tempo, ou aceleração. Seu nome é aceleração centrípeta e seu resultado é a mudança constante na direção da velocidade.

Vemos que isso é mesmo necessário. Sem a ação dessa aceleração radial e centrípeta, prevaleceriam as condições da primeira lei (Inércia) e o corpo deveria percorrer uma trajetória retilínea. Por outro lado, sem uma velocidade tangencial, essa força deveria conduzir o corpo para o centro do círculo num movimento uniformemente acelerado.

Podemos sem dúvida considerar a independência dos movimentos, como fez Galileu, e perceber que ambos os movimentos ocorrem simultaneamente e independentemente um do outro. Sua composição resulta na trajetória circular.

Veja a figura abaixo:

Aceleração centrípeta - Dedução da fórmula Acecentrip1_thumb%5B1%5D

A partir da posição P1 o corpo em movimento tende a seguir uma trajetória que o levaria até P2 . Entretanto a ação da força centrípeta o faz "cair" até P'2 por uma altura h. Isso acontece a cada diminuto intervalo de tempo que queiramos escolher.

Podemos escolher um intervalo de tempo tão pequeno para o qual h<<
Aceleração centrípeta - Dedução da fórmula Acecentrip2_thumb%5B1%5D

temos que:
Aceleração centrípeta - Dedução da fórmula Gif

o termo h² pode ser desconsiderado por ser muito pequeno e teremos

Aceleração centrípeta - Dedução da fórmula Gif

e podemos ver que o termo em vermelho é uma aceleração

Aceleração centrípeta - Dedução da fórmula Gif

sendo essa a aceleração centrípeta do MCU.
PedroX
PedroX
Administração
Administração

Mensagens : 995
Data de inscrição : 24/08/2011
Idade : 26
Localização : Campinas - SP

EDUFURTADO586 gosta desta mensagem

Ir para o topo Ir para baixo

Ir para o topo


 
Permissões neste fórum
Você não pode responder aos tópicos