Fórum PiR2
Gostaria de reagir a esta mensagem? Crie uma conta em poucos cliques ou inicie sessão para continuar.

Trapézio II

3 participantes

Ir para baixo

Trapézio II Empty Trapézio II

Mensagem por mcgiorda Seg 09 Maio 2011, 17:00

Um trapézio, com bases a e b, traça-se suas diagonais. No ponto de encontro destas diagonais, traça-se uma semi-reta paralela as bases delimitada pelos lados transversos. Prove que a medida dessa semi-reta é a media harmônica entre as bases.
mcgiorda
mcgiorda
Jedi
Jedi

Mensagens : 203
Data de inscrição : 05/05/2011
Idade : 28
Localização : Piracicaba - SP, Brasil

Ir para o topo Ir para baixo

Trapézio II Empty Re: Trapézio II

Mensagem por Elcioschin Seg 09 Maio 2011, 17:55

O enunciado vale para qualquer trapézio.
Para facilitar a explicação vou escolher um trapézio isósceles com a = 8, b = 2, h = 4, L = 5

Seja ABCD o trapézio colocado num sistema xOY com A na origem, B(8, 0), C(5,4), D(3, 4)

Seja P o ponto de encontro das diagonais AC e BD e seja MN a semi-reta paraela às bases passando por P

Deve-se provar que MN = 2/(1/a + 1/b) ----> MN = 2ab/(a + b) ----> MN = 2*8*2/(8 + 2) ----> MN = 16/5

Equação da reta AC ----> y = (4/5)*x
Equação da reta BD ----> y = - (4/5)*(x - 8 )

Coordenadas do ponto P ----> (4/5)* = - (5/50*(xP - 8 ) -----> x = 4P ----> yP = yM = yN = 16/5

Equação da reta AD -----> y = (4/3)*x ----> 16/5 = (4/3)*xM ----> xM = 12/5

Equação da reta BC -----> y = - (4/3)*(x - 8 ) ----> 16/5 = - (4/3)*(xN - 8 ) ----> xN = 28/5

MN = xN - xM -----> MN = 28/5 - 12/5 ----> MN = 16/5 ----> CQD

Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 63074
Data de inscrição : 15/09/2009
Idade : 75
Localização : Santos/SP

Ir para o topo Ir para baixo

Trapézio II Empty Re: Trapézio II

Mensagem por mcgiorda Seg 09 Maio 2011, 21:24

Muito bom, mas para provar alguma coisa você não pode generalizar certo?
mcgiorda
mcgiorda
Jedi
Jedi

Mensagens : 203
Data de inscrição : 05/05/2011
Idade : 28
Localização : Piracicaba - SP, Brasil

Ir para o topo Ir para baixo

Trapézio II Empty Re: Trapézio II

Mensagem por Elcioschin Ter 10 Maio 2011, 07:55

Certamente que não se pode generalizar.
Note que no início eu disse que, "para facilitar a explicação" eu tinha escolhido um trapézio específico.
A mesma técnica, através de GA, pode ser usada para um trapézio qualquer, fazendo

A(0, 0), B(a, 0), c(xC, h), D(xC-b, h)

Só que, para este caso geral, dá muito mais trabalho.

Certamente o problema pode também ser resolvido por geometria plana. Vamos aguardar a solução de outros usuários.
Elcioschin
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 63074
Data de inscrição : 15/09/2009
Idade : 75
Localização : Santos/SP

Ir para o topo Ir para baixo

Trapézio II Empty Re: Trapézio II

Mensagem por Viniciuscoelho Seg 08 Ago 2011, 18:40

Solução por geometria plana:
Trapézio e a media harmônica (function() { var scribd = document.createElement("script"); scribd.type = "text/javascript"; scribd.async = true; scribd.src = "http://www.scribd.com/javascripts/embed_code/inject.js"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(scribd, s); })();

Viniciuscoelho
Fera
Fera

Mensagens : 644
Data de inscrição : 25/12/2009
Idade : 33
Localização : Salvador

Ir para o topo Ir para baixo

Trapézio II Empty Re: Trapézio II

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Ir para o topo Ir para baixo

Ir para o topo


 
Permissões neste fórum
Você não pode responder aos tópicos