(CN 2013) - Trapézio

Ir em baixo

(CN 2013) - Trapézio Empty (CN 2013) - Trapézio

Mensagem por Convidado em Qua 30 Out 2013, 16:34

5) Considere que ABCD é um trapézio, onde os vértices são colocados em sentido horário, com bases AB = 10 e CD=22.
Marcam-se na base AB o ponto p e na base CD o ponto Q,tais que AP = 4 e CQ = X.Sabe-se que suas áreas dos quadriláteros APQD e PBCQ são iguais. Sendo assim, podemos afirmar que a medida x é:

(A) 10
(B) 12
(C) 14
(D) 15
(E) 16

Convidado
Convidado


Voltar ao Topo Ir em baixo

(CN 2013) - Trapézio Empty Re: (CN 2013) - Trapézio

Mensagem por ivomilton em Qua 30 Out 2013, 20:33

residentevil2 escreveu:5) Considere que ABCD é um trapézio, onde os vértices são colocados em sentido horário, com bases AB = 10 e CD=22.
Marcam-se na base AB o ponto p e na base CD o ponto Q,tais que AP = 4 e CQ = X.Sabe-se que suas áreas dos quadriláteros APQD e PBCQ são iguais. Sendo assim, podemos afirmar que a medida x é:

(A) 10
(B) 12
(C) 14
(D) 15
(E) 16
Boa noite,

AP = 4 ; PB = 10-4

BQ = 22-x ; QC = x

Como os quadriláteros APQD e PBCD têm a mesma altura, para que eles tenham igual área será necessário que as semi-somas de suas respectivas bases sejam iguais, o que faz com que as somas de suas respectivas bases sejam também iguais entre si.

AP + BQ = PB + QC
4 + 22-x = 6 + x
22-x - x = 6 - 4
22 - 2x = 2
22 - 2 = 2x

2x = 20
x = 10

Alternativa (A)



Um abraço.
ivomilton
ivomilton
Membro de Honra
 Membro de Honra

Mensagens : 4994
Data de inscrição : 08/07/2009
Idade : 86
Localização : São Paulo - Capital

Voltar ao Topo Ir em baixo

Voltar ao Topo

- Tópicos similares

 
Permissão deste fórum:
Você não pode responder aos tópicos neste fórum