(UNEB) Função quadrática

Ir em baixo

(UNEB) Função quadrática

Mensagem por dani_medrado em Qua 12 Set 2018, 11:43

Considere a função dada por f(x)=x2+mx-m. Os valores de m, para os quais o número 3 está compreendido entre as duas raízes reais da função, são tais que:
01) m>0 ou m<-4.
02) -4< m< -\frac{9}{2}.
03) m<-4.
04) m>4.
05)  {\color{Red} m< -\frac{9}{2}.} 


Alguém poderia me auxiliar nessa questão?

dani_medrado
Jedi
Jedi

Mensagens : 421
Data de inscrição : 07/06/2012
Idade : 22
Localização : Salvador, Bahia, Brasil

Voltar ao Topo Ir em baixo

Re: (UNEB) Função quadrática

Mensagem por Elcioschin em Qua 12 Set 2018, 12:08

x² + m.x - m = 0

∆ = m² - 4.1.(-m) ---> ∆ = m² + 4.m

Raízes: x' = [- m - √(m² + 4.m)]/2 e x" = [- m + √(m² + 4.m)]/2

x' < 3 < x" ---> Substitua e calcule m
avatar
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 47200
Data de inscrição : 15/09/2009
Idade : 72
Localização : Santos/SP

Voltar ao Topo Ir em baixo

Re: (UNEB) Função quadrática

Mensagem por dani_medrado em Sab 15 Set 2018, 12:03

Como resolvo o resto dessa questão?

dani_medrado
Jedi
Jedi

Mensagens : 421
Data de inscrição : 07/06/2012
Idade : 22
Localização : Salvador, Bahia, Brasil

Voltar ao Topo Ir em baixo

Re: (UNEB) Função quadrática

Mensagem por Elcioschin em Sab 15 Set 2018, 12:33

Fazendo o que sugeri:

x' < 3 < x" ---> Substitua x' e x" para obter duas inequações:

x' < 3 ---> calcule m
x" > 3 ---> calcule m

avatar
Elcioschin
Grande Mestre
Grande Mestre

Mensagens : 47200
Data de inscrição : 15/09/2009
Idade : 72
Localização : Santos/SP

Voltar ao Topo Ir em baixo

Re: (UNEB) Função quadrática

Mensagem por dani_medrado em Seg 17 Set 2018, 16:53

Não estou conseguindo terminar essa questão.. não sei como calcular a parte da inequação.

dani_medrado
Jedi
Jedi

Mensagens : 421
Data de inscrição : 07/06/2012
Idade : 22
Localização : Salvador, Bahia, Brasil

Voltar ao Topo Ir em baixo

Re: (UNEB) Função quadrática

Mensagem por Conteúdo patrocinado


Conteúdo patrocinado


Voltar ao Topo Ir em baixo

Voltar ao Topo

- Tópicos similares

 
Permissão deste fórum:
Você não pode responder aos tópicos neste fórum